6533b7d0fe1ef96bd125ae88

RESEARCH PRODUCT

Efficient microwave-assisted synthesis of glycerol monodecanoate

Ali MhannaLucie ChupinClaire-hélène BrachaisGilles BoniLaurence LecampLaurent PlasseraudJean-pierre CouvercelleDenis ChaumontLaurent Brachais

subject

Green chemistryBio-based building-blocksGlycerol derivatives02 engineering and technology010402 general chemistry01 natural sciences[ CHIM ] Chemical SciencesIndustrial and Manufacturing EngineeringCatalysischemistry.chemical_compoundGlycerolOrganic chemistry[CHIM]Chemical Sciences1-MonoacylglycerolComputingMilieux_MISCELLANEOUSGlycidolGeneral ChemistryDecanoic acidNuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnology0104 chemical sciencesMicrowave-assisted organic chemistrychemistryGreen chemistry13. Climate action0210 nano-technologySelectivityStoichiometryFood ScienceBiotechnology

description

International audience; Solvent-free microwave-assisted synthesis was carried out to prepare 2,3-dihydroxypropyl decanoate, by esterification of decanoic acid in the presence of two distinct glycerol derivatives, glycidol, and glycerol carbonate, respectively. The process described is based on microwaves heating source with electrical power in the range of 200–400 W, involving stoichiometric proportions of decanoic acid and glycerol derivatives, and using catalytic amounts of TBAI used as organocatalyst. Conversion and selectivity rates of esterification reactions were monitored by 1H and 13C{1H} NMR spectroscopy. The predominantly formed ester, 2,3-dihydroxypropyl decanoate was fully characterized by infrared and NMR spectroscopy, mass spectrometry, and elemental analysis. Compared with the classical heating procedures, and whatever the glycerol derivatives used, total conversions were obtained with considerably reduced reaction times. Thus, under 300 W, esterification requires only 1 min exposure from glycidol and 5 min from glycerol carbonate. The use of heating with conventional oil bath conditions needs residence times of more than 1 h (even 24 h in the case of glycerol carbonate). The microwave-assisted synthesis also notably enhances the selectivity in 2,3-dihydroxypropyl decanoate (at 300 W, 90, and 50%, respectively), reinforcing the efficiency and the interest of the method.Practical applications: The results establish that microwave heating is well suited for the solvent-free synthesis of glycerol monodecanoate from decanoic acid and two glycerol derivatives, glycidol, and glycerol carbonate. Reaction times are drastically reduced, and in both cases, marked improvements of the conversion and selectivity are recorded. The target α-monoglyceride, 2,3-dihydroxypropyl decanoate, has various potential applications such as antimicrobial properties, bacterial inhibitory activity, or denture disinfectant.Solvent-free microwave heating conditions are applied to the synthesis of 2,3-dihydroxypropyl decanoate by esterification of decanoic acid in the presence of two glycerol derivatives, glycidol, and glycerol carbonate. In both cases, conversion and selectivity gains, as well as notable reductions of reaction times are record.

10.1002/ejlt.201700133https://hal.archives-ouvertes.fr/hal-02122821