0000000000059956

AUTHOR

Denis Chaumont

Aggregation and Gel Formation in Basic Silico−Calco−Alkaline Solutions Studied:  A SAXS, SANS, and ELS Study

Gelation of strongly basic silico−alkaline solutions was promoted by appropriate additions of calcium ions. The structure of the aggregates formed in the precursor sols and the resulting gels were studied, within a wide length scale, using small-angle X-ray, small-angle neutron, and elastic light scattering. The study of the kinetics of aggregation was performed in situ. The experimental results demonstrate that gels are composed of aggregates exhibiting a fractal structure, large particles formed in the solutions just after calcium addition and, in some cases, small primary particles remaining in the solution phase. The structural features of the gels are strongly dependent on the concentr…

research product

Efficient microwave-assisted synthesis of glycerol monodecanoate

International audience; Solvent-free microwave-assisted synthesis was carried out to prepare 2,3-dihydroxypropyl decanoate, by esterification of decanoic acid in the presence of two distinct glycerol derivatives, glycidol, and glycerol carbonate, respectively. The process described is based on microwaves heating source with electrical power in the range of 200–400 W, involving stoichiometric proportions of decanoic acid and glycerol derivatives, and using catalytic amounts of TBAI used as organocatalyst. Conversion and selectivity rates of esterification reactions were monitored by 1H and 13C{1H} NMR spectroscopy. The predominantly formed ester, 2,3-dihydroxypropyl decanoate was fully chara…

research product

Synthèse sous champ micro-onde et caractérisation de chromite de lanthane strontium dopé utilisé comme anode de pile à combustible SOFC

National audience

research product

Application of total internal reflexion fluorescence microscopy for studying pH changes in an occluded electrochemical cell: Development of a waveguide sensor

A device for pH mapping derived from optical sensors similar to total internal reflection fluorescence microscopy (TIRFM) has been developed for future possible applications in the field of localized corrosion. The sensing principle is the increase of the fluorescent yield of the fluorescein with the pH of the medium. The basic principle of this sensor is based on the excitation of a fluorescent silica polymer film of nanometre dimensions, deposited by sol–gel method on a waveguiding layer. The total internal reflexion conditions creates an evanescent wave which interacts with the molecules trapped in the silica layer. A conventional microscope located above the sample collects the fluoresc…

research product

Aggregation Processes and Formation of Silico-calco-alkaline Gels under High Ionic Strength

This paper presents a systematic in situ study of the process of formation of silico-calco-alkaline gels starting from a liquid colloidal solution containing different alkaline ions and different calcium concentration until the final gel state. The combined use of X-ray and neutron small-angle scattering (SAS) and dynamical rheometry techniques lead to a consistent description of the structure of the aggregates and of the mechanisms of aggregation involved in gel formation. SAS results indicate that the aggregates are fractal objects, their structure strongly depending on calcium ion concentration. The differences in gelation kinetics for systems containing different alkaline ions were attr…

research product

Electrochemical Investigation of Lithium Intercalation in MOCVD Derived Nanostructured Anatase/Rutile TiO2

In this paper we report on the lithium reversible storage in titanium dioxide (TiO2) prepared by metal-organic chemical vapor deposition (MOCVD). Electrochemical properties in terms of lithium reversible insertion depend on the deposited microstructure. For thick films deposited on silicon wafer electrochemical activity of the anatase type of TiO2 is registered in the potential range 1.8-2.1 V vs. Li. For thinner films the intercalation reaction takes place in two potential ranges: 1.8-2.1 V vs. Li and below 1.4 V vs. Li. The second electroactivity range is attributed to lithium insertion into rutile. We found that the decrease of the lower potential limit (0.5 V instead of commonly used 1 …

research product

Estimation of band alignment at CdS/Cu 2 ZnSnS 4 hetero‐interface by direct XPS measurements

research product

Complex structural contribution of the morphotropic phase boundary in Na0.5Bi0.5TiO3 - CaTiO3 system

Abstract The correlation between structure and dielectric properties of lead-free (1-x)Na0.5Bi0.5TiO3 - xCaTiO3 ((1-x)NBT - xCT) polycrystalline ceramics was investigated systematically by X-ray diffraction, combined with impedance spectroscopy for dielectric characterizations. The system shows high miscibility in the entire composition range. A morphotropic phase boundary (MPB), at 0.09 ≤ x

research product

Structural model of gelation processes of a sodium silicate sol destabilized by calcium ions: combination of SAXS and rheological measurements

This study deals with the physico-chemical processes involved in the formation of basic fractal silica gels derived from a sodium silicate sol destabilized by calcium ions. Using small-angle X-ray scattering and dynamic rheological measurements, structural and viscoelastic properties have been investigated in situ during aggregation and gelation processes. The experimental results lead to a consistent model that describes the structural features and aggregation mechanisms involved in the formation of these gels.

research product

Microwave synthesis of yttria stabilized zirconia

Yttria stabilised zirconia (YSZ) nanocrystals, with a mean size between 5 and 10 nm, were prepared by microwave flash synthesis. Flash synthesis was performed in alcoholic solutions of yttrium, zirconium chloride and sodium ethoxide (EtONa) using a microwave autoclave (RAMO system) specially designed by authors. Energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) transmission and scanning electron microscopy (TEM and SEM) are used to characterized these nanoparticles. Compared with conventional synthesis, nanopowders can be produced in a short period (e.g. 10 s), both high purity and stoechiometric control a…

research product

Microwave synthesis of core-shell structured biocompatible magnetic nanohybrids in aqueous medium

In the past decade, biocompatible magnetic nanohybrids, i.e. materials consisting of an inorganic core encapsulated by a biocompatible polymeric corona, went throw various developments in biomedical applications especially in the fields of diagnosis and therapy. Numerous descriptions of their syntheses can be found in the literature (Zhang et al., 2002; Flesch et al., 2004; Fan et al., 2007; etc). These two-steps protocols often describe the use of organic or aqueous solvents, classical thermal heating, long time reaction as well as fastidious exchange and drying steps. In recent years, microwave heating has been proven to be a very original technology for nanoparticles synthesis due to its…

research product

Flash synthesis of zirconia nanoparticles by microwave forced hydrolysis

Forced hydrolysis preparation of zirconia sols and powders by microwave heating of zirconium tetrachloride solutions at temperatures equal to 180 °C leads in a few minutes to monodispersed nanoscale zirconia particles. Synthesis was performed in a microwave reactor called the RAMO system. This microwave reactor was designed by the authors. This flash-synthesis process combines the advantages of forced hydrolysis (homogeneous precipitation) and microwave heating (very fast heating rates). The sols and powders were characterized by x-ray diffraction,photon correlation spectroscopy (PCS), small-angle x-ray scattering, and transmission electron microscopy. Sols are colloidally stable, which mea…

research product

Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement

International audience; We developed a new scheme for obtaining coherent random lasing based on a chip consisting of a polymer film doped with Rhodamine 6G, having as scatterers butterfly-like TiO2 nanomembranes (TiO2-NM) supported on a glass substrate. The feedback mechanism for laser action is due to the multiple scattering of light by TiO2-NM rather than provided by localized variations of the refractive index in the polymer film. The above-threshold multiple spikes signature indicative of random laser emission with coherent feedback is confirmed. As nanomembranes are foreseen as new MEMS/NEMS building blocks, a new generation of combined active/passive photonic devices can be envisaged.

research product

Structural and spectral properties of ZnO nanorods by wet chemical method for hybrid solar cells applications

Abstract The synthesis of ZnO nanorods on transparent conducting oxides, Al doped ZnO seed layer on glass substrate (AZO) and indium tin oxide substrate (ITO) by using zinc nitrate hexahydrate (Zn (NO3)2·6H2O) and hexamethylenetetramine (HMT, (CH2)6N4 as raw materials is presented. The ZnO seed layer was fabricated by depositing an Al-doped ZnO thin film on glass substrate by sputtering. The effect of seeding on (AZO) and (ITO) substrate by using the wet chemical route growth of ZnO nanorods was investigated. The synthesized nanostructures of ZnO were characterized by X-ray diffraction (XRD), UV–vis absorption spectroscopy, scanning electron microscopy (SEM) and high-resolution transmission…

research product

Microwave synthesis of yttria stabilized zirconia (YSZ)

International audience

research product

Optimization of physicochemical and optical properties of nanocrystalline TiO 2 deposited on porous silicon by metal-organic chemical vapor deposition (MOCVD)

International audience; Titanium dioxide (TiO2) is very employed in solar cells due to its interesting physicochemical and optical properties allowing high device performances. Considering the extension of applications in nanotechnologies, nanocrystalline TiO2 is very promising for nanoscale components. In this work, nanocrystalline TiO2 thin films were successfully deposited on porous silicon (PSi) by metal organic chemical vapor deposition (MOCVD) technique at temperature of 550°C for different periods of times: 5, 10 and 15 min. The objective was to optimize the physicochemical and optical properties of the TiO2/PSi films dedicated for photovoltaic application. The structural, morphologi…

research product

Investigation on sol–gel synthesized Ag-doped TiO2 cermet thin films

Abstract Undoped TiO 2 and Ag–TiO 2 (up to 23 at.% Ag) cermet thin films and polycrystalline powders have been prepared by sol–gel process. Their structure, composition, surface morphology and optical properties have been investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and ultraviolet–visible spectroscopy (UV–VIS spectroscopy). It has been observed that while Ag does not form a solid solution with TiO 2 , it promotes the anatase to rutile phase transformation. The transformation temperature decreases from 827 °C for undoped TiO 2 to about 650 °C fo…

research product

Random Laser Based on TiO2–Nanomembranes

We demonstrated directional random laser emission from a dye-doped polymer film in the presence of a scattering medium consisting of TiO 2 nanomembranes. Evidence for coexistence of extended and localized modes are presented.

research product

Nanostructured Materials: Formation, Characterization, and Properties—Latest Advances in 1D, 2D, and 3D Nanostructures

research product

The structural properties of soda–silicate sols and of the lime–soda–silicate gel formation

Abstract Alkaline silicate solutions were prepared with varying SiO 2 –Na 2 O ratios, Rm=[SiO 2 ]/[Na 2 O]=2 or 3, with a constant silica concentration equal to 1.5 M. The structure and the number fraction of different silicate molecular species present in the solutions were classically determined for molar ratio Rm=2 using 29 Si nuclear magnetic resonance ( 29 Si NMR). In the case of the sample with Rm=3, for which no NMR data was available, we used small-angle X-ray scattering (SAXS) experiments to get this information. The SAXS model was previously tested with Rm=2 silicate solution. When Ca ++ is added to alkaline silicate solutions, a gel is obtained under well-defined conditions. The …

research product

Highly Dispersed Palladium-Polypyrrole Nanocomposites: In-Water Synthesis and Application for Catalytic Arylation of Heteroaromatics by Direct C-H Bond Activation

Pd@PPy hybrid catalytic materials are synthesized in water via redox polymerization reaction of pyrrole with [Pd(NH 3 ) 4 Cl 2 ]. The nanocomposites formed are composed of highly dispersed palladium particles which are either zerovalent or easily reducible, and are embedded in spherical polypyrrole globules. A unique combination of high palladium dispersion (NP size: 2.4 nm) and elevated palladium content (35 wt%) is obtained. The components of these novel nanocomposites are characterized by means of FTIR, XPS, XRD, SEM, and TEM microscopy techniques. The process of formation in solution is also monitored using UV-visible and DLS techniques. The application of these novel hybrid nanomateria…

research product

Investigation of absorber and heterojunction in the pure sulphide kesterite

This paper aims to study the properties of the absorber layer and the heterojunction in kesterite solar cells. The Cu2ZnSnS4 (CZTS) thin films were layered on a glass substrate from a colloidal solution of metal salts and thiourea dissolved in a mixture of water and ethanol and deposited by spin coating technique. The samples were then heat treated in a furnace, in the presence of sulphur powder and under a nitrogen gas flow. The results revealed the formation of homogeneous layers of a pure kesterite phase of CZTS crystallites after heat treatment with correct stoichiometry and oxidation states. The optical transmission measurements indicate an energy band-gap of 1.4 eV and an absorption c…

research product

Non-linear optical study of hierarchical 3D Al doped ZnO nanosheet arrays deposited by successive ionic adsorption and reaction method

Abstract Successive ionic layer adsorption and reaction (SILAR) method is based on the adsorption and reaction of the ions in the cationic solution and the ionic solution, respectively. This method is simple, inexpensive, large-scale deposition, effective way for deposition on 3D substrates, low-temperature process and represents an easy way for the preparation of doped, composite and heterojunction materials. To take advantage of this method and the ZnO nanostructures, various parameters have been optimized. Undoped and Aluminum (Al) doped ZnO nanostructures were prepared by the SILAR technique. The characterization of the nanostructures prepared was carried out using X-ray diffraction (XR…

research product

Detection of morphotropic phase boundary in A-site/Ca-substituted Na0.5Bi0.5TiO3 complex oxides ferroelectric system

Abstract Vibrational and structural properties of lead-free piezoelectric (1-x)Na0.5Bi0.5TiO3–xCaTiO3 (0 ≤ x ≤ 1.00) solid solutions have been investigated using Raman spectroscopy and X-ray diffraction. Different anomalies were detected and analyzed taking into consideration the phase transition from rhombohedral to orthorhombic phase at room temperature. All Raman bands were interpreted through the variation in the peak positions (frequency) and the corresponding half-widths at half maximum (HWHM) as a function of x. XRD used as a complementary technique to Raman spectroscopy, showed that the rhombohedral – orthorhombic phase transition went gradually through an intermediate phase consist…

research product

Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor

Abstract Nanostructures of TiO2 were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO2 nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

research product

TiO2 nanostructures prepared by ferrocene/cobalt catalyst agents

We present the growth and characterization of TiO2 nanocrystals. Nanostructured growth is obtained in a low-pressure CVD system by using an organometallic precursor Ti(OC3H7)4 as both the Ti and O source catalyzed by both ferrocene (an organometallic precursor) and cobalt metallic clusters prepared by the microwave-assisted polyol method. Two kinds of TiO2 structures were obtained in the cobalt clusters: a) pine-tree like (with short-leaf structure) and b) long-leaf structures as large as a few micrometers in size and both under 10 nm in thickness. Long-leaf TiO2 structures were grown at cobalt grain boundaries. For the growth conditions utilized, the TiO2 structures are composed of both an…

research product

Real-Time Observation of “Soft” Magic-Size Clusters during Hydrolysis of the Model Metallodrug Bismuth Disalicylate

International audience; Colloidal bismuth therapeutics have been used for hundreds of years, yet remain mysterious. Here we report an X-ray pair distribution function (PDF) study of the solvolysis of bismuth disalicylate, a model for the metallodrug bismuth subsalicylate (Pepto-Bismol). This reveals catalysis by traces of water, followed by multistep cluster growth. The ratio of the two major species, {Bi9O7} and {Bi38O44}, depends on exposure to air, time, and the solvent. The solution-phase cluster structures are of significantly higher symmetry in comparison to solid-state analogues, with reduced off-center Bi3+ displacements. This explains why such “magic-size” clusters can be both stab…

research product

Partial cation-substitution in the sulphide kesterite: Absorber and heterojunction engineering

International audience; The kesterite-based solar cells still suffer from a low conversion efficiency due to the large defect of the open circuit voltage Voc. This defect is mainly due to several problems related to the absorber material and the device interfaces. It has been reported that the partial cation substitution in the kesterite structure, can improve many properties of the absorbent layer and the device, i.e. improve the grain size, minimise the anti-site defects and disorder in the Cu-Zn plane, ameliorate the charge separation at the buffer/absorber interface. In this work, thin films of suphide kesterite are made by substituting copper (Cu) with silver (Ag) and zinc with mangane…

research product

Flash microwave synthesis of trevorite nanoparticles.

Nickel ferrite nanoparticles have several possible applications as cathode materials for rechargeable batteries, named 'lithium-ion' batteries. In this study, NiFe{sub 2}O{sub 4} was prepared by microwave induced thermohydrolysis. The obtained nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), BET method, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). All the results show that the microwave one-step flash synthesis leads in a very short time to NiFe{sub 2}O{sub 4} nanoparticles with elementary particles size close to 4-5 nm, and high specific surfaces (close to 240 m…

research product

Quantification of relaxor behavior in (1 − x)Na0.5Bi0.5TiO3 – xCaTiO3 lead-free ceramics system

Abstract This work examines the relaxor behavior of lead-free ceramic (1 − x)Na0.5Bi0.5TiO3–xCaTiO3 systems. A stable rhombohedral (R3c) phase is detected at room temperature for all compositions by XRD and Raman spectroscopy. Relaxor behavior was observed in the temperature range 300 K - 400 K for all materials. Ceramics exhibit normal ferroelectric properties at room temperature, and then they develop relaxor characteristics with increasing temperature showing the same dispersive properties. This work quantifies the relaxor phenomenon at low temperature. For instance, the maximum temperature of relaxor and the order of dispersion were determined at the strongest dispersion. Finally, the s…

research product

One step grafting of monomethoxy poly(ethylenglycol) during synthesis of maghemite nanoparticles in aqueous medium

Abstract Grafting of silanated monomethoxy poly(ethylene glycol) (m-PEG) onto maghemite nanoparticles surface in aqueous medium through one step procedure was investigated. The major characteristic of this work is that the grafting of m-PEG was produced during the synthesis of maghemite nanoparticles. The maghemite nanoparticles were characterized by photon correlation spectroscopy (PCS), zeta potential measurement, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The spinel structure of maghemite nanoparticles was verified and successful grafting of m-PEG was evid…

research product

29Si NMR and Small-Angle X-ray Scattering Studies of the Effect of Alkaline Ions (Li+, Na+, and K+) in Silico-Alkaline Sols

Alkali−silica reactions (ASR) which occur in concrete can be simulated in laboratory by destabilization of silico-alkaline aqueous solutions by addition of calcium ions. The relevant features of the reaction depend on the nature of alkaline ions (Li+, Na+, or K+) and on the silica/alkaline ratios which fix the distribution of the molecular species in the precursor solution. 29Si NMR spectroscopy and small-angle X-ray scattering (SAXS) techniques were used to study the structure and size distribution of molecular and colloidal species in sols with different silica/alkaline molar ratio and several types of alkaline ions. Experimental SAXS curves were simulated using a simple structural model …

research product

Influence of Sn Low Doping on the Morphological, Structural and Optical Properties of ZnO Films Deposited by Sol Gel Dip-Coating

In this work, Undoped Zinc Oxide (ZnO) and Sndoped Zinc Oxide (ZnO:Sn) films have been deposited by sol-gel dip coating method, where the Sn/Zn atomic ratio was 3% and 5% in the solution. The effects of Sn incorporation on morphological, structural and optical properties of ZnO films were investigated. The Scanning Electron Microscopy (SEM) showed that the morphological surface of the films was affected by Sn low doping. The X-Ray Diffraction (XRD) patterns showed that all films have polycrystalline structures, and the doping incorporation has not lead to substantial changes in the structural characteristics of ZnO films. The crystallite size was calculated using the well-known Scherrer’s f…

research product