6533b7d0fe1ef96bd125aea9
RESEARCH PRODUCT
Reflexions on Mahler: Dessins, Modularity and Gauge Theories
Jiakang BaoYang-hui HeAli Zahabisubject
High Energy Physics - TheoryF-theoryMathematics::Number Theory[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesquivermembrane modelMathematics - Algebraic GeometryMathematics::K-Theory and HomologyFOS: MathematicsgroupNumber Theory (math.NT)modularstructureAlgebraic Geometry (math.AG)Mathematical PhysicsMathematics - Number Theory[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]monodromyresolutionMathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]High Energy Physics - Theory (hep-th)flowgauge field theory[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]description
We provide a unified framework of Mahler measure, dessins d'enfants, and gauge theory. With certain physically motivated Newton polynomials from reflexive polygons, the Mahler measure and the dessin are in one-to-one correspondence. From the Mahler measure, one can construct a Hauptmodul for a congruence subgroup of the modular group, which contains the subgroup associated to the dessin. In brane tilings and quiver gauge theories, the modular Mahler flow gives a natural resolution of the inequivalence amongst the three different complex structures $\tau_{R,G,B}$. We also study how, in F-theory, 7-branes and their monodromies arise in the context of dessins. Moreover, we give a dictionary on how Mahler measure generates Gromov-Witten invariants.
year | journal | country | edition | language |
---|---|---|---|---|
2021-11-19 |