6533b7d0fe1ef96bd125b014
RESEARCH PRODUCT
Remote Photoplethysmography Based on Implicit Living Skin Tissue Segmentation
Julien DuboisSerge BobbiaYannick Benezethsubject
[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer science[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing0206 medical engineering[INFO.INFO-IM] Computer Science [cs]/Medical Imaging02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciences010309 optics[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingSkin tissueRegion of interestPhotoplethysmogram0103 physical sciences[INFO.INFO-IM]Computer Science [cs]/Medical ImagingSegmentationComputer visionFace detection[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industrySupervised learning[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020601 biomedical engineering[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/ImagingArtificial intelligencebusinessdescription
International audience; Region of interest selection is an essential part for remote photoplethysmography (rPPG) algorithms. Most of the time, face detection provided by a supervised learning of physical appearance features coupled with skin detection is used for region of interest selection. However, both methods have several limitations and we propose to implicitly select living skin tissue via their particular pulsatility feature. The input video stream is decomposed into several temporal superpixels from which pulse signals are extracted. Pulsatility measure for each temporal superpixel is then used to merge pulse traces and estimate the photoplethysmogram signal. This allows to select skin tissue and furthermore to favor areas where the pulse trace is more predominant. Experimental results showed that our method perform better than state of the art algorithms without any critical face or skin detection.
year | journal | country | edition | language |
---|---|---|---|---|
2016-12-04 |