6533b7d0fe1ef96bd125b4b4
RESEARCH PRODUCT
Groups with soluble minimax conjugate classes of subgroups
Francesco Russosubject
Mathematics::Group TheoryT57-57.97Conjugacy classeSettore MAT/02 - AlgebraApplied mathematics. Quantitative methodsfc-groupspolycyclic groupssoluble minimax groupsSettore MAT/03 - Geometriasoluble minimax groups $FC$-groups polycyclic groups.conjugacy classesdescription
A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If $\mathfrak{X}$ is a class of groups, a group $G$ is said to have $\mathfrak{X}$-conjugate classes of subgroups if $G/core_G(N_G(H)) \in \mathfrak{X}$ for each subgroup $H$ of $G$. Here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of $G/Z(G)$. We also characterize $FC$-groups which have soluble minimax conjugate classes of subgroups.
year | journal | country | edition | language |
---|---|---|---|---|
2008-01-01 |