6533b7d0fe1ef96bd125b7f3

RESEARCH PRODUCT

Ruddlesden-Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure n=2: Stabilized Colloids Stored in the Solid State.

Raquel E. GalianRita B. Cevallos-toledoJulia Pérez-prietoIgnacio Rosa-pardoRaul ArenalMichael FickertGonzalo AbellánVíctor Oestreicher

subject

Col·loidesNanoestructuresPhotoluminescenceMaterials scienceSuperlatticeHalideGeneral Medicine02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesColloidChemical engineeringPhase (matter)Nanodot0210 nano-technologyQuantum wellPerovskite (structure)

description

Ruddlesden-Popper lead halide perovskite (RP-LHP) nano-nanostructures can be regarded as self-assembled quantum wells or superlattices of 3D perovskites with an intrinsic quantum well thickness of a single or a few (n=2-4) lead halide layers; the quantum wells are separated by organic layers. They can be scaled down to a single quantum well dimension. Here, the preparation of highly (photo)chemical and colloidal stable hybrid LHP nanosheets (NSs) of ca. 7.4 μm lateral size and 2.5 nm quantum well height (thereby presenting a deep blue emission at ca. 440 nm), is reported for the first time. The NSs are close-lying and they even interconnect when deposited on a substrate. Their synthesis is based on the use of the p-toluenesulfonic acid/dodecylamine (pTS/DDA) ligand pair and their (photo)chemical stability and photoluminescence is enhanced by adding EuBr2 nanodots (EuNDs). Strikingly, they can be preserved as a solid and stored for at least one year. The blue emissive colloid can be recovered from the solid as needed by simply dispersing the powder in toluene and then using it to prepare solid films, making them very promising candidates for manufacturing devices.

10.1002/anie.202113451https://pubmed.ncbi.nlm.nih.gov/34672406