6533b7d0fe1ef96bd125b989
RESEARCH PRODUCT
Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral
Armin SchweitzerStefan WeinzierlChristian Bognersubject
PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsPure mathematics010308 nuclear & particles physicsFeynman integralAnalytic continuationFOS: Physical sciencesMathematical Physics (math-ph)01 natural sciencesElliptic curveRange (mathematics)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)NomeKite0103 physical sciencesConvergence (routing)Sunriselcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsMathematical Physicsdescription
We study the analytic continuation of Feynman integrals from the kite family, expressed in terms of elliptic generalisations of (multiple) polylogarithms. Expressed in this way, the Feynman integrals are functions of two periods of an elliptic curve. We show that all what is required is just the analytic continuation of these two periods. We present an explicit formula for the two periods for all values of $t \in {\mathbb R}$. Furthermore, the nome $q$ of the elliptic curve satisfies over the complete range in $t$ the inequality $|q|\le 1$, where $|q|=1$ is attained only at the singular points $t\in\{m^2,9m^2,\infty\}$. This ensures the convergence of the $q$-series expansion of the $\mathrm{ELi}$-functions and provides a fast and efficient evaluation of these Feynman integrals.
year | journal | country | edition | language |
---|---|---|---|---|
2017-09-01 | Nuclear Physics B |