6533b7d0fe1ef96bd125b9df
RESEARCH PRODUCT
Multiple Solutions with Sign Information for a Class of Coercive (p, 2)-Equations
Calogero VetroNikolaos S. PapageorgiouFrancesca Vetrosubject
Pure mathematicsClass (set theory)Constant sign solutionGeneral MathematicsNodal solutions010102 general mathematicsMultiplicity (mathematics)01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeNonlinear systemSettore MAT/05 - Analisi MatematicaEuler's formulasymbolsHomotopy0101 mathematicsLaplace operator(p 2)-differential operatorCritical groupSign (mathematics)Parametric statisticsMathematicsdescription
We consider a nonlinear Dirichlet equation driven by the sum of a p-Laplacian and of a Laplacian (a (p, 2)-equation). The hypotheses on the reaction f(z, x) are minimal and make the energy (Euler) functional of the problem coercive. We prove two multiplicity theorems producing three and four nontrivial smooth solutions, respectively, all with sign information. We apply our multiplicity results to the particular case of a class of parametric (p, 2)-equations.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2019-07-22 | Bulletin of the Malaysian Mathematical Sciences Society |