6533b7d0fe1ef96bd125ba09

RESEARCH PRODUCT

Topological Decompositions of the Pauli Group and their Influence on Dynamical Systems

Fabio BagarelloFabio BagarelloYanga BavumaFrancesco G. Russo

subject

Central productsHamiltoniansPhysicsDynamical systems theoryActions of groups010102 general mathematicsQuaternion groupFOS: Physical sciencesCyclic groupMathematical Physics (math-ph)Pseudo-fermionsTopology01 natural sciencesInterpretation (model theory)Pauli groups0103 physical sciencesPauli groupOrder (group theory)Geometry and Topology0101 mathematicsConnection (algebraic framework)010306 general physicsQuotient groupMathematical Physics

description

In the present paper we show that it is possible to obtain the well known Pauli group $P=\langle X,Y,Z \ | \ X^2=Y^2=Z^2=1, (YZ)^4=(ZX)^4=(XY)^4=1 \rangle $ of order $16$ as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere $S^3$. The first of these spaces of orbits is realized via an action of the quaternion group $Q_8$ on $S^3$; the second one via an action of the cyclic group of order four $\mathbb{Z}(4)$ on $S^3$. We deduce a result of decomposition of $P$ of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.

https://doi.org/10.1007/s11040-021-09387-1