6533b7d1fe1ef96bd125bbcd
RESEARCH PRODUCT
Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different Reaction Pathways for Alkyl- and Aryl-Substituted Species
Jeremy D. EricksonPetra VaskoRyan D. RiparettiJames C. FettingerHeikki TuononenPhilip P. Powersubject
areenin eliminaatiooxidative additionmetallyleenitreaktiomekanismiDFT laskutmetallylenesarene eliminationreaction mechanismhapettava additioDFT calculationsdescription
Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was found to be catalytic, aided by a second molecule of water. The lowest energy pathway for the elimination of arene from the corresponding stannylene involved sigma-bond metathesis rather than separate oxidative addition and reductive elimination steps. The reactivity of Sn(ArMe6)2 with water or methanol contrasts with that of Sn{(CH(SiMe3)2}2, which affords the Sn(IV) insertion products {(Me3Si)2CH}2Sn(H)OH and {(Me3Si)2CH}2Sn(H)OMe. The differences were tentatively ascribed to the Lewis basicity of the employed solvent (Et2O vs THF) and the use of molar vs millimolar concentrations of the substrate. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 |