0000000000137024

AUTHOR

Philip P. Power

Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different Reaction Pathways for Alkyl- and Aryl-Substituted Species

Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was…

research product

Effects of Remote Ligand Substituents on the Structures, Spectroscopic, and Magnetic Properties of Two-Coordinate Transition-Metal Thiolate Complexes

The first-row transition-metal(II) dithiolates M(SAriPr4)2 [AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2; M = Cr (1), Mn (3), Fe (4), Co (5), Ni (6), and Zn (7)] and Cr(SArMe6)2 [2; ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2] and the ligand-transfer reagent (NaSAriPr4)2 (8) are described. In contrast to their M(SAriPr6)2 (M = Cr, Mn, Fe, Co, Ni, and Zn; AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2) congeners, which differ from 1 and 3-6 in having p-isopropyl groups on the flanking aryl rings of the terphenyl substituents, compounds 1 and 4-6 display highly bent coordination geometries with S-M-S angles of 109.802(2)° (1), 120.2828(3)° (4), 91.730(3)° (5), and 92.68(2)° (6) as well as relatively close metal-flanking …

research product

Isolation of a stable, acyclic, two-coordinate silylene.

The synthesis and characterization of a stable, acyclic two-coordinate silylene, Si(SAr(Me(6)))(2) [Ar(Me(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Me(3))(2)], by reduction of Br(2)Si(SAr(Me(6)))(2) with a magnesium(I) reductant is described. It features a V-shaped silicon coordination with a S-Si-S angle of 90.52(2)° and an average Si-S distance of 2.158(3) A. Although it reacts readily with an alkyl halide, it does not react with hydrogen under ambient conditions, probably as a result of the ca. 4.3 eV energy difference between the frontier silicon lone pair and 3p orbitals.

research product

Dispersion Forces and Counterintuitive Steric Effects in Main Group Molecules: Heavier Group 14 (Si-Pb) Dichalcogenolate Carbene Analogues with Sub-90° Interligand Bond Angles

The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features-the most notable of which is their strong tendency to display acute interligand, Ch-M-Ch, bond angles that are often well below 90°. Furthermore, and contrary to normal steric expectations, the interligand angles were found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, in…

research product

Mechanistic Study of Stepwise Methylisocyanide Coupling and C-H Activation Mediated by a Low-Valent Main Group Molecule

An experimental and DFT investigation of the mechanism of the coupling of methylisocyanide and C-H activation mediated by the germylene (germanediyl) Ge(Ar(Me6))2 (Ar(Me6) = C6H3-2,6(C6H2-2,4,6-Me3)2) showed that it proceeded by initial MeNC adduct formation followed by an isomerization involving the migratory insertion of the MeNC carbon into the Ge-C ligand bond. Addition of excess MeNC led to sequential insertions of two further MeNC molecules into the Ge-C bond. The insertion of the third MeNC leads to methylisocyanide methyl group C-H activation to afford an azagermacyclopentadienyl species. The X-ray crystal structures of the 1:1 (Ar(Me6))2GeCNMe adduct, the first and final insertion …

research product

Cleavage of Ge–Ge and Sn–Sn Triple Bonds in Heavy Group 14 Element Alkyne Analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) by Reaction with Group 6 Carbonyls

The reactions of heavier group 14 element alkyne analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) with the group 6 transition-metal carbonyls M(CO)6 (M = Cr, Mo, W) under UV irradiation resulted in the cleavage of the E–E triple bond and the formation of the complexes {AriPr4EM(CO)4}2 (1–6), which were characterized by single crystal X-ray diffraction as well as by IR and multinuclear NMR spectroscopy. Single-crystal X-ray structural analyses of 1–6 showed that the complexes have a nearly planar rhomboid M2E2 core with three-coordinate group 14 atoms. The coordination geometry at the group 6 metals is distorted octahedral formed by four carbonyl groups as well as two br…

research product

Addition of Ethylene or Hydrogen to a Main-Group Metal Cluster under Mild Conditions

Reaction of the tin cluster Sn8(Arinline image)4 (Arinline image=C6H2-2,6-(C6H3-2,4,6-Me3)2) with excess ethylene or dihydrogen at 25 °C/1 atmosphere yielded two new clusters that incorporated ethylene or hydrogen. The reaction with ethylene yielded Sn4(Arinline image)4(C2H2)5 that contained five ethylene moieties bridging four aryl substituted tin atoms and one tin–tin bond. Reaction with H2 produced a cyclic tin species of formula (Sn(H)Arinline image)4, which could also be synthesized by the reaction of {(Arinline image)Sn(μ-Cl)}2 with DIBAL-H. These reactions represent the first instances of direct reactions of isolable main-group clusters with ethylene or hydrogen under mild conditions…

research product

The Instability of Ni{N(SiMe3 )2 }2 : A Fifty Year Old Transition Metal Silylamide Mystery.

The characterization of the unstable Ni(II) bis(silylamide) Ni{N(SiMe3 )2 }2 (1), its THF complex Ni{N(SiMe3 )2 }2 (THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3 )2 }2 (py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric Ni(I) species, [Ni{N(SiMe3 )2 }]4 (4), also obtainable from LiN(SiMe3 )2 and NiCl2 (DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of Ni(II) to Ni(I) and the stabilization of 4 through dispersion forces.

research product

Reaction of LiArMe6 (ArMe6ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) with indium(I)chloride yields three m-terphenyl stabilized mixed-valent organoindium subhalides

Indium(I)chloride reacts with LiArMe6 (ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) in THF to give three new mixed-valent organoindium subhalides. While the 1:1 reaction of InCl with LiArMe6 yields the known metal-rich cluster In8(ArMe6)4 (1), the use of freshly prepared LiArMe6 led to incorporation of iodide, derived from the synthesis of LiArMe6, into the structures, to afford In4(ArMe6)4I2 (2) along with minor amounts of In3(ArMe6)3I2 (3). When the same reaction was performed in 4:3 stoichiometry, the mixed-halide compound In3(ArMe6)3ClI (4) was obtained. Further increasing the chloride:aryl ligand ratio resulted in the formation of the known mixed-halide species In4(ArMe6)4Cl2I2 that can also be…

research product

Reversible complexation of ethylene by a silylene under ambient conditions.

Treatment of toluene solutions of the silylenes Si(SArMe6)2 (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2, 1) or Si(SArPri4)2 (ArPri4 = C6H3-2,6(C6H3-2,6-Pri2)2, 2) with excess ethylene gas affords the siliranes (ArMe6S)2tiebar above startSiCH2tiebar above endCH2 (3) or (ArPri4S)2tiebar above startSiCH2tiebar above endCH2 (4). Silirane 4 evolves ethylene spontaneously at room temperature in toluene solution. A Van’t Hoff analysis by variable-temperature 1H NMR spectroscopy showed that ΔGassn = −24.9(2.5) kJ mol–1 for 4. A computational study of the reaction mechanism using a model silylene Si(SPh)2 (Ph = C6H5) was in harmony with the Van’t Hoff analysis, yielding ΔGassn = −24 kJ mol–1 and an activatio…

research product

Reactions of Alkenes and Alkynes with an Acyclic Silylene and Heavier Tetrylenes under Ambient Conditions

Cycloaddition reactions of the acyclic silylene Si(SAriPr4)2 (AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) with a variety of alkenes and alkynes were investigated. Its reactions with the alkynes phenylacetylene and diphenylacetylene and the diene 2,3-dimethyl-1,3-butadiene yielded silacycles (AriPr4S)2tiebar above startSi(CH═tiebar above endCPh) (1), (AriPr4S)2tiebar above startSi(PhC═tiebar above endCPh) (2), and (AriPr4S)2tiebar above startSiCH2CMeCMetiebar above endCH2 (3) at ambient temperature. The compounds were characterized by X-ray crystallography, 1H, 13C, and 29Si NMR spectroscopy, and IR spectroscopy. No reaction was observed with more substituted alkenes such as propene, (Z)-2-butene, te…

research product

Cleavage of Ge–Ge and Sn–Sn Triple Bonds in Heavy Group 14 Element Alkyne Analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) by Reaction with Group 6 Carbonyls

The reactions of heavier group 14 element alkyne analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) with the group 6 transition-metal carbonyls M(CO)6 (M = Cr, Mo, W) under UV irradiation resulted in the cleavage of the E–E triple bond and the formation of the complexes {AriPr4EM(CO)4}2 (1–6), which were characterized by single crystal X-ray diffraction as well as by IR and multinuclear NMR spectroscopy. Single-crystal X-ray structural analyses of 1–6 showed that the complexes have a nearly planar rhomboid M2E2 core with three-coordinate group 14 atoms. The coordination geometry at the group 6 metals is distorted octahedral formed by four carbonyl groups as well as two br…

research product

Interactions of a Diplumbyne with Dinuclear Transition Metal Carbonyls to Afford Metalloplumbylenes

The metathesis reactions of the diplumbyne AriPr6PbPbAriPr6 (AriPr6 = −C6H3–2,6-(C6H2–2,4,6-iPr3)2) with the dinuclear metal carbonyls Mn2(CO)10, Fe2(CO)9, and Co2(CO)8 under mild conditions afforded the complexes Mn(CO)5(PbAriPr6) (1), Fe(CO)4(PbAriPr6)2 (2), and Co4(CO)9(PbAriPr6)2 (3), respectively. Complexes 1–3 were structurally characterized by single-crystal X-ray diffraction and spectroscopically characterized by 1H, 13C{1H}, 59Co{1H}, and 207Pb{1H} NMR; UV–vis; and IR methods. They are rare examples of species formed by the direct reaction of a group 14 dimetallyne with transition metal carbonyls. Complexes 1 and 2 feature Mn–Pb or Fe–Pb single bonds, whereas in 3 a Co–Pb cluster i…

research product

Molecular Complexes Featuring Unsupported Dispersion-Enhanced Aluminum–Copper and Gallium–Copper Bonds

The reaction of the copper(I) β-diketiminate copper complex {(Cu(BDIMes))2(μ-C6H6)} (BDIMes = N,N′-bis(2,4,6-trimethylphenyl)pentane-2,4-diiminate) with the low-valent group 13 metal β-diketiminates M(BDIDip) (M = Al or Ga; BDIDip = N,N′-bis(2,6-diisopropylphenyl)pentane-2,4-diiminate) in toluene afforded the complexes {(BDIMes)CuAl(BDIDip)} and {(BDIMes)CuGa(BDIDip)}. These feature unsupported copper–aluminum or copper–gallium bonds with short metal–metal distances, Cu–Al = 2.3010(6) Å and Cu–Ga = 2.2916(5) Å. Density functional theory (DFT) calculations showed that approximately half of the calculated association enthalpies can be attributed to London dispersion forces. peerReviewed

research product

Nature of Bonding in Group 13 Dimetallenes: a Delicate Balance between Singlet Diradical Character and Closed Shell Interactions

The nature of metal-metal bonding in group 13 dimetallenes REER (E = Al, Ga, In, Tl; R = H, Me, (t)Bu, Ph) was investigated by use of quantum chemical methods that include HF, second order Møller-Plesset perturbation theory (MP2), coupled cluster (CCSD(T)), complete active space with (CASPT2) and without (CAS) second order perturbation theory, and two density functionals, namely, B3LYP and M06-2X. The results show that the metal-metal interaction in group 13 dimetallenes stems almost exclusively from static and dynamic electron correlation effects: both dialuminenes and digallenes have an important singlet diradical component in their wave function, whereas the bonding in the heavier diinde…

research product

Computational Analysis of n→π* Back-Bonding in Metallylene–Isocyanide Complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph)

A detailed computational investigation of orbital interactions in metal–carbon bonds of metallylene–isocyanide adducts of the type R2MCNR′ (M = Si, Ge, Sn; R, R′ = alkyl, aryl) was performed using density functional theory and different methods based on energy decomposition analysis. Similar analyses have not been carried out before for metal complexes of isocyanides, even though the related carbonyl complexes have been under intense investigations throughout the years. The results of our work reveal that the relative importance of π-type back-bonding interactions in these systems increases in the sequence Sn < Ge ≪ Si, and in contrast to some earlier assumptions, the π-component cannot be …

research product

The Monomeric Alanediyl : AlAr i Pr8 (Ar i Pr8 = C 6 H-2,6-(C 6 H 2 -2,4,6-Pr i 3 ) 2 -3,5-Pr i 2 ): An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom

research product

A Monomeric Aluminum Imide (Iminoalane) with Al–N Triple-Bonding: Bonding Analysis and Dispersion Energy Stabilization

The reaction of :AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-iPr3)2-3,5-iPr2) with ArMe6N3 (ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) in hexanes at ambient temperature gave the aluminum imide AriPr8AlNArMe6 (1). Its crystal structure displayed short Al–N distances of 1.625(4) and 1.628(3) Å with linear (C–Al–N–C = 180°) or almost linear (C–Al–N = 172.4(2)°; Al–N–C = 172.5(3)°) geometries. DFT calculations confirm linear geometry with an Al–N distance of 1.635 Å. According to energy decomposition analysis, the Al–N bond has three orbital components totaling −1350 kJ mol–1 and instantaneous interaction energy of −551 kJ mol–1 with respect to :AlAriPr8 and ArMe6N̈:. Dispersion accounts for −89 kJ mol–1, …

research product

Reductions of M{N(SiMe3)2}3 (M = V, Cr, Fe): Terminal and Bridging Low-Valent First-Row Transition Metal Hydrido Complexes and “Metallo-Transamination”

The reaction of the vanadium(III) tris(silylamide) V{N(SiMe3)2}3 with LiAlH4 in diethyl ether gives the highly unstable mixed-metal polyhydride [V(μ2-H)6[Al{N(SiMe3)2}2]3][Li(OEt2)3] (1), which was structurally characterized. Alternatively, performing the same reaction in the presence of 12-crown-4 affords a rare example of a structurally verified vanadium terminal hydride complex, [VH{N(SiMe3)2}3][Li(12-crown-4)2] (2). The corresponding deuteride 2D was also prepared using LiAlD4. In contrast, no hydride complexes were isolated by reaction of M{N(SiMe3)2}3 (M = Cr, Fe) with LiAlH4 and 12-crown-4. Instead, these reactions afforded the anionic metal(II) complexes [M{N(SiMe3)2}3][Li(12-crown-…

research product

The Monomeric Alanediyl : AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2) : An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom

Reduction of the aluminum iodide AlI2AriPr8 (1; AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2) with 5% w/w Na/NaCl in hexanes gave a dark red solution from which the monomeric alanediyl :AlAriPr8 (2) was isolated in ca. 28% yield as yellow-orange crystals. Compounds 1 and 2 were characterized by X-ray crystallography, electronic and NMR spectroscopy, and theoretical calculations. The Al atom in 2 is one-coordinate, and the compound displays two absorptions in its electronic spectrum at 354 and 455 nm. It reacts with H2 under ambient conditions to give the aluminum hydride {AlH(μ-H)AriPr8}2, probably via a weakly bound dimer of 2 as an intermediate. peerReviewed

research product

Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different Reaction Pathways for Alkyl- and Aryl-Substituted Species

Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was…

research product

A Germanium Isocyanide Complex Featuring (n -> π*) Back-Bonding and Its Conversion to a Hydride/Cyanide Product via C–H Bond Activation under Mild Conditions

Reaction of the diarylgermylene Ge(Ar(Me(6)))(2) [Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(CH(3))(3))(2)] with tert-butyl isocyanide gave the Lewis adduct species (Ar(Me(6)))(2)GeCNBu(t), in which the isocyanide ligand displays a decreased C-N stretching frequency consistent with an n → π* back-bonding interaction. Density functional theory confirmed that the HOMO is a Ge-C bonding combination between the lone pair of electrons on the germanium atom and the C-N π* orbital of the isocyanide ligand. The complex undergoes facile C-H bond activation to produce a new diarylgermanium hydride/cyanide species and isobutene via heterolytic cleavage of the N-Bu(t) bond.

research product

The Instability of Ni{N(SiMe3)2}2: A Fifty Year Old Transition Metal Silylamide Mystery

The characterization of the unstable NiII bis(silylamide) Ni{N(SiMe3)2}2 (1), its THF complex Ni{N(SiMe3)2}2(THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3)2}2(py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric NiI species, [Ni{N(SiMe3)2}]4 (4), also obtainable from LiN(SiMe3)2 and NiCl2(DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of NiII to NiI and the stabilization of 4 through dispersion forces. peerReviewed

research product

Reactions of Terphenyl-Substituted Digallene AriPr4GaGaAriPr4 (AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) with Transition Metal Carbonyls and Theoretical Investigation of the Mechanism of Addition

The neutral digallene AriPr4GaGaAriPr4 (AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) was shown to react at ca. 25 °C in pentane solution with group 6 transition metal carbonyl complexes M(CO)6 (M = Cr, Mo, W) under UV irradiation to afford compounds of the general formula trans-[M(GaAriPr4)2(CO)4] in modest yields. The bis(gallanediyl) complexes were characterized spectroscopically and by X-ray crystallography, which demonstrated that they were isostructural. In each complex, the gallium atom is two-coordinate with essentially linear geometry, which is relatively rare for gallanediyl-substituted transition metal species. The experimental data show that the gallanediyl ligand :GaAriPr4 behaves as a g…

research product

Reaction of LiArMe6 (ArMe6= C6H3-2,6-(C6H2-2,4,6-Me3)2) with indium(I)chloride yields three m-terphenyl stabilized mixed-valent organoindium subhalides

Abstract Indium(I)chloride reacts with LiAr Me 6 ( Ar Me 6  = C6H3-2,6-(C6H2-2,4,6-Me3)2) in THF to give three new mixed-valent organoindium subhalides. While the 1:1 reaction of InCl with LiAr Me 6 yields the known metal-rich cluster In8( Ar Me 6 )4 (1), the use of freshly prepared LiAr Me 6 led to incorporation of iodide, derived from the synthesis of LiAr Me 6 , into the structures, to afford In4( Ar Me 6 )4I2 (2) along with minor amounts of In3( Ar Me 6 )3I2 (3). When the same reaction was performed in 4:3 stoichiometry, the mixed-halide compound In3( Ar Me 6 )3ClI (4) was obtained. Further increasing the chloride:aryl ligand ratio resulted in the formation of the known mixed-halide spe…

research product

Counterintuitive Mechanisms of the Addition of Hydrogen and Simple Olefins to Heavy Group 13 Alkene Analogues

The mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric…

research product

CCDC 1401116: Experimental Crystal Structure Determination

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

research product

CCDC 1401114: Experimental Crystal Structure Determination

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

research product

CCDC 2058689: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 955314: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 2070539: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 2022317: Experimental Crystal Structure Determination

Related Article: Kristian L. Mears, Cary R. Stennett, Elina K. Taskinen, Caroline E. Knapp, Claire J. Carmalt, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|19874|doi:10.1021/jacs.0c10099

research product

CCDC 1036417: Experimental Crystal Structure Determination

Related Article: Petra Vasko, Shuai Wang, Heikki M. Tuononen, Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|3802|doi:10.1002/anie.201411595

research product

CCDC 955316: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1970388: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 1555899: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 955306: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1828738: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 1555900: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 1431125: Experimental Crystal Structure Determination

Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884

research product

CCDC 955308: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1427361: Experimental Crystal Structure Determination

Related Article: Felicitas Lips, James C. Fettinger, Akseli Mansikkamäki, Heikki M. Tuononen, and Philip P. Power|2014|J.Am.Chem.Soc.|136|634|doi:10.1021/ja411951y

research product

CCDC 2026034: Experimental Crystal Structure Determination

Related Article: Joshua D. Queen, Annika Lehmann, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|20554|doi:10.1021/jacs.0c10222

research product

CCDC 1401113: Experimental Crystal Structure Determination

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

research product

CCDC 954558: Experimental Crystal Structure Determination

Related Article: Zachary D. Brown , Petra Vasko , Jeremy D. Erickson , James C. Fettinger , Heikki M. Tuononen , and Philip P. Power|2013|J.Am.Chem.Soc.|135|6257|doi:10.1021/ja4003553

research product

CCDC 2065247: Experimental Crystal Structure Determination

Related Article: Joshua D. Queen, Sini Irvankoski, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2021|J.Am.Chem.Soc.|143|6351|doi:10.1021/jacs.1c02463

research product

CCDC 2026033: Experimental Crystal Structure Determination

Related Article: Joshua D. Queen, Annika Lehmann, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|20554|doi:10.1021/jacs.0c10222

research product

CCDC 955309: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 955315: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 955300: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1400650: Experimental Crystal Structure Determination

Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052

research product

CCDC 1035161: Experimental Crystal Structure Determination

Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x

research product

CCDC 1431127: Experimental Crystal Structure Determination

Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884

research product

CCDC 1035162: Experimental Crystal Structure Determination

Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x

research product

CCDC 955298: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1970386: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 1431126: Experimental Crystal Structure Determination

Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884

research product

CCDC 955313: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 2065246: Experimental Crystal Structure Determination

Related Article: Joshua D. Queen, Sini Irvankoski, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2021|J.Am.Chem.Soc.|143|6351|doi:10.1021/jacs.1c02463

research product

CCDC 955302: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 954559: Experimental Crystal Structure Determination

Related Article: Zachary D. Brown , Petra Vasko , Jeremy D. Erickson , James C. Fettinger , Heikki M. Tuononen , and Philip P. Power|2013|J.Am.Chem.Soc.|135|6257|doi:10.1021/ja4003553

research product

CCDC 1035163: Experimental Crystal Structure Determination

Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x

research product

CCDC 2074655: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 2070550: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 2027035: Experimental Crystal Structure Determination

Related Article: Qihao Zhu, James C. Fettinger, Petra Vasko, Philip P. Power|2020|Organometallics|39|4629|doi:10.1021/acs.organomet.0c00659

research product

CCDC 955312: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1555898: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 955307: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 2018925: Experimental Crystal Structure Determination

Related Article: Qihao Zhu, James C. Fettinger, Petra Vasko, Philip P. Power|2020|Organometallics|39|4629|doi:10.1021/acs.organomet.0c00659

research product

CCDC 955303: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1555903: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 1427362: Experimental Crystal Structure Determination

Related Article: Felicitas Lips, James C. Fettinger, Akseli Mansikkamäki, Heikki M. Tuononen, and Philip P. Power|2014|J.Am.Chem.Soc.|136|634|doi:10.1021/ja411951y

research product

CCDC 955310: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 955299: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 2022316: Experimental Crystal Structure Determination

Related Article: Kristian L. Mears, Cary R. Stennett, Elina K. Taskinen, Caroline E. Knapp, Claire J. Carmalt, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|19874|doi:10.1021/jacs.0c10099

research product

CCDC 1420621: Experimental Crystal Structure Determination

Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052

research product

CCDC 2018923: Experimental Crystal Structure Determination

Related Article: Qihao Zhu, James C. Fettinger, Petra Vasko, Philip P. Power|2020|Organometallics|39|4629|doi:10.1021/acs.organomet.0c00659

research product

CCDC 1555901: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 2071502: Experimental Crystal Structure Determination

Related Article: Cary R. Stennett, Clifton L. Wagner, James C. Fettinger, Petra Vasko, Philip P. Power|2021|Inorg.Chem.|60|11401|doi:10.1021/acs.inorgchem.1c01399

research product

CCDC 954557: Experimental Crystal Structure Determination

Related Article: Zachary D. Brown , Petra Vasko , Jeremy D. Erickson , James C. Fettinger , Heikki M. Tuononen , and Philip P. Power|2013|J.Am.Chem.Soc.|135|6257|doi:10.1021/ja4003553

research product

CCDC 1400651: Experimental Crystal Structure Determination

Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052

research product

CCDC 1555902: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 1401115: Experimental Crystal Structure Determination

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

research product

CCDC 955301: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1036416: Experimental Crystal Structure Determination

Related Article: Petra Vasko, Shuai Wang, Heikki M. Tuononen, Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|3802|doi:10.1002/anie.201411595

research product

CCDC 955311: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 955305: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 2065248: Experimental Crystal Structure Determination

Related Article: Joshua D. Queen, Sini Irvankoski, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2021|J.Am.Chem.Soc.|143|6351|doi:10.1021/jacs.1c02463

research product

CCDC 955304: Experimental Crystal Structure Determination

Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a

research product

CCDC 1555896: Experimental Crystal Structure Determination

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

research product

CCDC 1431124: Experimental Crystal Structure Determination

Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884

research product