6533b858fe1ef96bd12b58e3

RESEARCH PRODUCT

Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different Reaction Pathways for Alkyl- and Aryl-Substituted Species

Heikki M. TuononenRyan D. RiparettiPetra VaskoPhilip P. PowerJeremy D. EricksonJames C. Fettinger

subject

oxidative additionMetathesisPhotochemistryDFT calculationsMedicinal chemistryReductive eliminationInorganic Chemistrychemistry.chemical_compoundTerphenylreaktiomekanismiReactivity (chemistry)metallylenesarene eliminationPhysical and Theoretical Chemistryta116Chemistryareenin eliminaatioArylOrganic ChemistryNuclear magnetic resonance spectroscopyOxidative additionmetallyleenitDFT laskutMethanolreaction mechanismhapettava additio

description

Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was found to be catalytic, aided by a second molecule of water. The lowest energy pathway for the elimination of arene from the corresponding stannylene involved sigma-bond metathesis rather than separate oxidative addition and reductive elimination steps. The reactivity of Sn(ArMe6)2 with water or methanol contrasts with ...

10.1021/acs.organomet.5b00884http://juuli.fi/Record/0009212415