6533b7d1fe1ef96bd125c2cb
RESEARCH PRODUCT
Risk Assessment of Hip Fracture Based on Machine Learning
Eduardo VillamorM. J. RupérezCarlos MonserratAlessio GalassiJosé D. Martín-guerrerosubject
0301 basic medicineArticle SubjectProcess (engineering)Computer scienceQH301-705.5INGENIERIA MECANICAmedia_common.quotation_subjectOsteoporosisBiomedical EngineeringMedicine (miscellaneous)030209 endocrinology & metabolismBioengineeringMachine learningcomputer.software_genreRisk AssessmentMachine Learning03 medical and health sciencesHip Fracture0302 clinical medicinemedicine03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edadesSensitivity (control systems)Biology (General)media_commonHip fractureVariablesbusiness.industryGold standard (test)medicine.diseaseRandom forest030104 developmental biologyArtificial intelligenceRisk assessmentbusinessLENGUAJES Y SISTEMAS INFORMATICOScomputerTP248.13-248.65Research ArticleBiotechnologydescription
[EN] Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard in osteoporosis clinical assessment. However, its classification accuracy is only around 65%. In order to improve this accuracy, this paper proposes the use of Machine Learning (ML) models trained with data from a biomechanical model that simulates a sideways-fall. Machine Learning (ML) models are models able to learn and to make predictions from data. During a training process, ML models learn a function that maps inputs and outputs without previous knowledge of the problem. The main advantage of ML models is that once the mapping function is constructed, they can make predictions for complex biomechanical behaviours in real time. However, despite the increasing popularity of Machine Learning (ML) models and their wide application to many fields of medicine, their use as hip fracture predictors is still limited. This paper proposes the use of ML models to assess and predict hip fracture risk. Clinical, geometric, and biomechanical variables from the finite element simulation of a side fall are used as independent variables to train the models. Among the different tested models, Random Forest stands out, showing its capability to outperform BMD-DXA, achieving an accuracy over 87%, with specificity over 92% and sensitivity over 83%.
year | journal | country | edition | language |
---|---|---|---|---|
2020-12-22 | Applied Bionics and Biomechanics |