6533b7d1fe1ef96bd125c37d

RESEARCH PRODUCT

Nonlinear embeddings: Applications to analysis, fractals and polynomial root finding

Vladimir García-morales

subject

Discrete mathematicsPolynomialGeneral MathematicsApplied MathematicsGeneral Physics and AstronomyParameterized complexityFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Pattern Formation and Solitons (nlin.PS)Nonlinear Sciences - Pattern Formation and Solitons01 natural sciencesNonlinear Sciences - Adaptation and Self-Organizing Systems010305 fluids & plasmasProperties of polynomial rootsNonlinear system0103 physical sciencesCountable setConnection (algebraic framework)010306 general physicsComplex planeReal lineAdaptation and Self-Organizing Systems (nlin.AO)Mathematical PhysicsMathematics

description

We introduce $\mathcal{B}_{\kappa}$-embeddings, nonlinear mathematical structures that connect, through smooth paths parameterized by $\kappa$, a finite or denumerable set of objects at $\kappa=0$ (e.g. numbers, functions, vectors, coefficients of a generating function...) to their ordinary sum at $\kappa \to \infty$. We show that $\mathcal{B}_{\kappa}$-embeddings can be used to design nonlinear irreversible processes through this connection. A number of examples of increasing complexity are worked out to illustrate the possibilities uncovered by this concept. These include not only smooth functions but also fractals on the real line and on the complex plane. As an application, we use $\mathcal{B}_{\kappa}$-embeddings to formulate a robust method for finding all roots of a univariate polynomial without factorizing or deflating the polynomial. We illustrate this method by finding all roots of a polynomial of 19th degree.

https://dx.doi.org/10.48550/arxiv.1607.02889