6533b7d1fe1ef96bd125c450
RESEARCH PRODUCT
Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today.
Ahad MokhtarzadehParinaz AbdollahiyanBehzad BaradaranFatemeh OroojalianMiguel De La Guardiasubject
0303 health sciences3D bioprintingStimuli responsiveTissue EngineeringTissue ScaffoldsChemistryCell substrateBioprintingPharmaceutical ScienceNanotechnologyBiocompatible MaterialsHydrogels02 engineering and technologyMatrix (biology)021001 nanoscience & nanotechnologyBiocompatible materiallaw.invention03 medical and health sciencesTissue engineeringlawSelf-healing hydrogelsRegenerationViability assay0210 nano-technology030304 developmental biologydescription
The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D structure, to protect the embedded cells, and to mimic the native ECM. The hydrophilic nature of hydrogels can provide an ideal milieu for cell viability and structure, which simulate the native tissues. Hydrogel systems have been applied as a favorable matrix for growth factor delivery and cell immobilization. This study reviews a brief explanation of the structure, characters, applications, fabrication methods, and future outlooks of stimuli responsive hydrogels in tissue engineering and, in particular, 3D bioprinting.
year | journal | country | edition | language |
---|---|---|---|---|
2020-08-08 | Journal of controlled release : official journal of the Controlled Release Society |