6533b7d1fe1ef96bd125c468
RESEARCH PRODUCT
Deinococcus radiodurans' SRA-HNH domain containing protein Shp (Dr1533) is involved in faithful genome inheritance maintenance following DNA damage
Mauro PitaroSuzanne SommerFederica CastaniAlex FerrandiPaola BarbieriMonica ManciniSara TagliaferriRosa AlduinaClaire Bouthier De La TourIan Marc BonapaceMauro Fasanosubject
DNA RepairDNA cytosine-methylation; DNA damage; DR1533 locus; Genotoxic agents; Mn2+; SRA domain; Biophysics; Biochemistry; Molecular BiologyGenotoxic agents[SDV]Life Sciences [q-bio]DNA cytosine-methylationperspectiveSettore BIO/19 - Microbiologia GeneraleBiochemistrychemistry.chemical_compound0302 clinical medicineKanamycinCloning Molecularcytosine0303 health sciencesDR1533 locusbiologyChemistryGenotoxic agentuhrf1Mn(2+)Mn2+SRA domainDeinococcusrecognitionmanganese(ii)DNA BacterialDNA damageDNA repairoxidationUbiquitin-Protein LigasesBiophysicsSettore BIO/11 - Biologia Molecolareresistance03 medical and health sciencesBacterial ProteinsProtein DomainsDR1533 locuDrug Resistance BacterialEscherichia coliHumansfeaturesAmino Acid SequenceGeneMolecular Biology030304 developmental biologyOligonucleotideComputational BiologyDeinococcus radioduransDNA Methylationbiology.organism_classificationMolecular biologygenomic DNArepairMutationCCAAT-Enhancer-Binding ProteinsDNA damageHomologous recombination030217 neurology & neurosurgeryDNAGenome BacterialMutagensdescription
WOS:000452343100012; International audience; Background: Deinococcus radiodurans R1 (DR) survives conditions of extreme desiccation, irradiation and exposure to genotoxic chemicals, due to efficient DNA breaks repair, also through Mn2+ protection of DNA repair enzymes. Methods: Possible annotated domains of the DR1533 locus protein (Shp) were searched by bioinformatic analysis. The gene was cloned and expressed as fusion protein. Band-shift assays of Shp or the SRA and HNH domains were performed on oligonucleotides, genomic DNA from E. coif and DR. slip knock-out mutant was generated by homologous recombination with a kanamycin resistance cassette. Results: DR1533 contains an N-terminal SRA domain and a C-terminal HNH motif (SRA-HNH Protein, Shp). Through its SRA domain, Shp binds double-strand oligonucleotides containing 5mC and 5hmC, but also unmethylated and mismatched cytosines in presence of Mn2+. Shp also binds to Escherichia coli dcm(+) genomic DNA, and to cytosine unmethylated DR and E. coli dcm(-) genomic DNAs, but only in presence of Mn2+. Under these binding conditions, Shp displays DNAse activity through its HNH domain. Shp KO enhanced \textgreater 100 fold the number of spontaneous mutants, whilst the treatment with DNA double strand break inducing agents enhanced up to 3-log the number of survivors. Conclusions: The SRA-HNH containing protein Shp binds to and cuts 5mC DNA, and unmethylated DNA in a Mn2+ dependent manner, and might be involved in faithful genome inheritance maintenance following DNA damage. General significance: Our results provide evidence for a potential role of DR Shp protein for genome integrity maintenance, following DNA double strand breaks induced by genotoxic agents.
year | journal | country | edition | language |
---|---|---|---|---|
2018-06-27 |