6533b7d1fe1ef96bd125cb21

RESEARCH PRODUCT

Bayesian forecasting with the Holt–Winters model

Enriqueta VercherJosé D. BermúdezJosé Vicente Segura

subject

Marketing021103 operations researchComputer scienceStrategy and ManagementPosterior probabilityMonte Carlo methodExponential smoothingBayesian probability0211 other engineering and technologiesLinear modelPrediction intervalSampling (statistics)02 engineering and technologyManagement Science and Operations ResearchManagement Information SystemsAcceptance samplingStatistics0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAlgorithmSmoothing

description

Exponential smoothing methods are widely used as forecasting techniques in inventory systems and business planning, where reliable prediction intervals are also required for a large number of series. This paper describes a Bayesian forecasting approach based on the Holt–Winters model, which allows obtaining accurate prediction intervals. We show how to build them incorporating the uncertainty due to the smoothing unknowns using a linear heteroscedastic model. That linear formulation simplifies obtaining the posterior distribution on the unknowns; a random sample from such posterior, which is not analytical, is provided using an acceptance sampling procedure and a Monte Carlo approach gives the predictive distributions. On the basis of this scheme, point-wise forecasts and prediction intervals are obtained. The accuracy of the proposed Bayesian forecasting approach for building prediction intervals is tested using the 3003 time series from the M3-competition.

https://doi.org/10.1057/jors.2008.152