6533b7d1fe1ef96bd125cb5a

RESEARCH PRODUCT

A multiscale X-ray phase-contrast tomography dataset of whole human left lung

Alexandre BellierR. Patrick XianStijn E. VerledenDanny JonigkWilli L. WagnerPeter D. LeePaul TafforeauSebastian MarussiMaximilian AckermannClaire WalshJoseph Jacob

subject

MicrometreLeft lungPhase contrast tomographyMaterials sciencelawResolution (electron density)X-raySynchrotron radiationTomographySynchrotronlaw.inventionBiomedical engineering

description

ABSTRACTTechnological advancements in X-ray imaging using bright and coherent synchrotron sources now allows to decouple sample size and resolution, while maintaining high sensitivity to the microstructure of soft, partially dehydrated tissues. The recently developed imaging technique, hierarchical phase-contrast tomography, is a comprehensive approach to address the challenge of organ-scale (up to tens of centimeters) soft tissue imaging with resolution and sensitivity down to the cellular level. Using this technique, we imaged ex vivo an entire human left lung at an isotropic voxel size of 25.08 μm along with local zooms down to 6.05 - 6.5 μm and 2.45 - 2.5 μm in voxel size. The high tissue contrast offered by the fourth-generation synchrotron source at the European Synchrotron Radiation Facility reveals complex multiscale anatomical constitution of the human lung from the macroscopic (centimeter) down to the microscopic (micrometer) scale. The dataset provides complete organ-scale 3D information of the secondary pulmonary lobules and delineates the microstructure of lung nodules with unprecedented detail.

https://doi.org/10.1101/2021.11.20.469361