6533b7d1fe1ef96bd125cd34

RESEARCH PRODUCT

A generalization of Françoise's algorithm for calculating higher order Melnikov functions

Pavao MardešićMichèle PelletierAhmed Jebrane

subject

Abelian integralMathematics(all)Hamiltonian vector fieldMelnikov functionDifferential equationGeneral MathematicsAbelian integralLimit cycleAbelian integral; Melnikov function; Limit cycle; Fuchs systemHamiltonian systemFuchs systemVector fieldAbelian groupAlgorithmHamiltonian (control theory)Linear equationMathematics

description

Abstract In [J. Differential Equations 146 (2) (1998) 320–335], Francoise gives an algorithm for calculating the first nonvanishing Melnikov function Ml of a small polynomial perturbation of a Hamiltonian vector field and shows that Ml is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Francoise's condition is not verified. We generalize Francoise's algorithm to this case and we show that Ml belongs to the C [ log t,t,1/t] module above the Abelian integrals. We also establish the linear differential system verified by these Melnikov functions Ml(t).

https://doi.org/10.1016/s0007-4497(02)01138-7