6533b7d1fe1ef96bd125cd81
RESEARCH PRODUCT
Variability in δ13C values between individual Daphnia ephippia: Implications for palaeo-studies
Jos SchilderLinda Van RoijGert Jan ReichartAppy SluijsOliver HeiriGeochemistryMarine Palynology And PalaeoceanographyStratigraphy And PaleontologyMarine PalynologyStratigraphy & Paleontologysubject
0106 biological sciencesArcheology010504 meteorology & atmospheric sciencesEvolutionhiilita1171Daphnia [water flea]01 natural sciencesDaphniaCarbon cycleStable carbon isotopesAlgaeBehavior and SystematicsPalaeolimnologyTavernemedicineEphippiaEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesStable isotopesPresentisotoopitGlobal and Planetary Changebiologyδ13CEcologyStable isotope ratio010604 marine biology & hydrobiologykausivaihtelutGeologySeasonalitySeasonalitybiology.organism_classificationmedicine.diseasepaleolimnologiaLaser ablationEuropeLakesArchaeology13. Climate actionIsotopes of carbonvesikirputta1181Daphnia ephippiaPhysical geographydescription
The stable carbon isotope ratio (δ13 C value) of Daphnia spp. resting egg shells (ephippia) provides information on past changes in Daphnia diet. Measurements are typically performed on samples of _20 ephippia, which obscures the range of values associated with individual ephippia. Using a recently developed laser ablation-based technique, we perform multiple δ13 C analyses on individual ephippia, which show a high degree of reproducibility (standard deviations 0.1e0.5‰). We further measured δ13 C values of 13 ephippia from surface sediments of three Swiss lakes. In the well-oxygenated lake with low methane concentrations, δ13 C values are close to values typical for algae (_31.4‰) and the range in values is relatively small (5.8‰). This variability is likely driven by seasonal (or inter-annual) variability in algae δ13 C values. In two seasonally anoxic lakes with higher methane concentrations, average values were lower (_41.4 and _43.9‰, respectively) and the ranges much larger (10.7 and 20.0‰).We attribute this variability to seasonal variation in incorporation of methane-derived carbon. In one lake we identify two statistically distinct isotopic populations, which may reflect separate production peaks. The potentially large within-sample variability should be considered when interpreting small-amplitude, short-lived isotope excursions based on samples consisting of few ephippia. We show that measurements on single ephippia can be performed using laser ablation, which allows for refined assessments of past Daphnia diet and carbon cycling in lake food webs. Furthermore, our study provides a basis for similar measurements on other chitinous remains (e.g. from chironomids, bryozoans).
year | journal | country | edition | language |
---|---|---|---|---|
2018-06-01 | Quaternary Science Reviews |