6533b7d1fe1ef96bd125cf69

RESEARCH PRODUCT

Use of Medaka Fish as Vertebrate Model to Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress and Life Span Extension.

Neus Rodriguez-sanchezDeborah J. BurksSalvador GenovésCarlos AcostaJosé L. MullorMarina Piquer-gilAránzazu Leal-tassiasAna V. Sánchez-sánchezPatricia MartorellDaniel Ramón

subject

0301 basic medicineAgingAntioxidantanimal structuresantioxidantEmbryo Nonmammalianmedicine.medical_treatmentOryziasLongevityOryziasmedicine.disease_causecocoa polyphenolsSuperoxide dismutase03 medical and health sciencesbiology.animalmedaka fishBotanymedicinelife span extensionAnimalsSodFlavonoidsCacaobiologyPlant ExtractsSuperoxide DismutaseCocoa ExtractVertebratefood and beveragesGene Expression Regulation DevelopmentalPolyphenolsVitamin K 3EmbryoHydrogen Peroxidebiology.organism_classificationEnzyme assayCell biologyOxidative Stress030104 developmental biologyembryonic structuresDietary Supplementsbiology.proteinFoxOGeriatrics and GerontologyOxidative stress

description

Oxidative stress (OS) can induce cell apoptosis and thus plays an important role in aging. Antioxidant foods protect tissues from OS and contribute to a healthier lifestyle. In this study, we described the used of medaka embryos (Oryzias latipes) to study the putative antioxidant capacity of dietary cocoa extract in vertebrates. A polyphenol-enriched cocoa extract regulated the expression of several genes implicated in OS, thereby protecting fish embryos from induced OS. The cocoa extract activated superoxide dismutase enzyme activity in embryos and adult fish tissues, suggesting a common mechanism for protection during embryonic development and adulthood. Furthermore, long-term feeding of the cocoa extract increased fish life span. Our study demonstrates that the polyphenol-enriched cocoa extract decreases OS and extends life span in medaka fish, validating the use of medaka embryos as an economical platform to screen the antioxidant capacity of food compounds.

10.1089/rej.2017.1982https://pubmed.ncbi.nlm.nih.gov/28982278