0000000000158334
AUTHOR
Ana V. Sánchez-sánchez
Use of Medaka Fish as Vertebrate Model to Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress and Life Span Extension.
Oxidative stress (OS) can induce cell apoptosis and thus plays an important role in aging. Antioxidant foods protect tissues from OS and contribute to a healthier lifestyle. In this study, we described the used of medaka embryos (Oryzias latipes) to study the putative antioxidant capacity of dietary cocoa extract in vertebrates. A polyphenol-enriched cocoa extract regulated the expression of several genes implicated in OS, thereby protecting fish embryos from induced OS. The cocoa extract activated superoxide dismutase enzyme activity in embryos and adult fish tissues, suggesting a common mechanism for protection during embryonic development and adulthood. Furthermore, long-term feeding of …
Nanog Regulates Proliferation During Early Fish Development
Abstract Nanog is involved in controlling pluripotency and differentiation of stem cells in vitro. However, its function in vivo has been studied only in mouse embryos and various reports suggest that Nanog may not be required for the regulation of differentiation. To better understand endogenous Nanog function, more animal models should be introduced to complement the murine model. Here, we have identified the homolog of the mammalian Nanog gene in teleost fish and describe the endogenous expression of Ol-Nanog mRNA and protein during medaka (Oryzias latipes) embryonic development and in the adult gonads. Using medaka fish as a vertebrate model to study Nanog function, we demonstrate that …
Analysis of the Ush2a Gene in Medaka Fish (Oryzias latipes)
Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for ge…
Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity
Manganese complexes of polyamines consisting of an aza-pyridinophane macrocyclic core functionalised with side chains containing quinoline or pyridine units have been characterised by a variety of solution techniques and single crystal x-ray diffraction. Some of these compounds have proved to display interesting antioxidant capabilities in vitro and in vivo in prokaryotic (bacteria) and eukaryotic (yeast and fish embryo) organisms. In particular, the Mn complex of the ligand containing a 4-quinoline group in its side arm which, as it happens in the MnSOD enzymes, has a water molecule coordinated to the metal ion that shows the lowest toxicity and highest functional efficiency both in vitro …
Nanog Regulates Primordial Germ Cell Migration Through Cxcr4b
Abstract Gonadal development in vertebrates depends on the early determination of primordial germ cells (PGCs) and their correct migration to the sites where the gonads develop. Several genes have been implicated in PGC specification and migration in vertebrates. Additionally, some of the genes associated with pluripotency, such as Oct4 and Nanog, are expressed in PGCs and gonads, suggesting a role for these genes in maintaining pluripotency of the germ lineage, which may be considered the only cell type that perpetually maintains stemness properties. Here, we report that medaka Nanog (Ol-Nanog) is expressed in the developing PGCs. Depletion of Ol-Nanog protein causes aberrant migration of …