6533b7d1fe1ef96bd125d705
RESEARCH PRODUCT
Detachment of Chain-Forming Neuroblasts by Fyn-Mediated Control of cell–cell Adhesion in the Postnatal Brain
Vicente Herranz-pérezVicente Herranz-pérezJosé Manuel García-verdugoToshihiro AkaikeTakao HikitaYayoi SetoNatsuki DohiYuchio YanagawaMasato SawadaKazunobu SawamotoKazunobu SawamotoKazuya SobueNatsumi Y. HommaNaoko KanekoKazuma FujikakeSatoshi OsagaMitsuharu Hattorisubject
Male0301 basic medicineanimal structuresRostral migratory streamNerve Tissue ProteinsProto-Oncogene Proteins c-fynAdherens junctionMice03 medical and health sciencesFYNNeural Stem CellsNeuroblastCell MovementCell AdhesionmedicineAnimalsCell adhesionResearch ArticlesChemistryGeneral NeurosciencefungiBrainCateninsCadherinsDAB1Granule cellOlfactory BulbOlfactory bulbCell biology030104 developmental biologymedicine.anatomical_structurenervous systemGene Knockdown Techniquesembryonic structuresFemaledescription
In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell–cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening andin vivoloss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell–cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB.SIGNIFICANCE STATEMENTIn the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell–cell adhesion between chain-forming neuroblasts, which involves adherens junction-like structures. Our results suggest that Fyn-mediated regulation of the cell–cell adhesion of neuroblasts is critical for their detachment from chains in the postnatal brain.
year | journal | country | edition | language |
---|---|---|---|---|
2018-05-09 | The Journal of Neuroscience |