6533b7d1fe1ef96bd125d910

RESEARCH PRODUCT

Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

Michael WandChuan Li

subject

FOS: Computer and information sciencesRandom fieldMarkov random fieldArtificial neural networkMarkov chainComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020207 software engineeringPattern recognition02 engineering and technologyIterative reconstructionConvolutional neural networkComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusinessGenerative grammarTexture synthesis

description

This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adapt local features with considerable variability, yielding results far out of reach of classic generative MRF methods.

https://doi.org/10.1109/cvpr.2016.272