6533b7d1fe1ef96bd125d925
RESEARCH PRODUCT
Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics
Mario CuocoIvan J. Vera-marunK. S. DasDenys MakarovBart J. Van WeesPaola GentileCarmine OrtixCarmine OrtixCarmine Ortixsubject
LetterChemistry(all)geometrical controlFOS: Physical sciencesBioengineeringRELAXATIONApplied Physics (physics.app-ph)02 engineering and technologySpin current7. Clean energyelectrical and spin resistanceMaterials Science(all)National Graphene InstituteOn demandMesoscale and Nanoscale Physics (cond-mat.mes-hall)LOGICGeneral Materials ScienceElectronicsPhysicsspintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsbusiness.industryMechanical EngineeringMEMORYnon-local spin valvesPhysics - Applied PhysicsGeneral ChemistrySpintronicsDissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsTRANSPORTROOM-TEMPERATURENanoelectronicsnonlocal spin valvesMETALResearchInstitutes_Networks_Beacons/national_graphene_institutecurved nanoarchitectures; electrical and spin resistance; geometrical control; nonlocal spin valves; SpintronicsOptoelectronicscurved nanoarchitecturesINJECTION0210 nano-technologybusinessEfficient energy usedescription
Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can be used to reach an independent tuning of spin transport and charge transport characteristics. These results put the foundation for the design of efficient pure spin current based electronics, which can be integrated in complex three-dimensional architectures.
year | journal | country | edition | language |
---|---|---|---|---|
2019-09-13 | Nano Letters |