6533b7d1fe1ef96bd125d97f

RESEARCH PRODUCT

Effect of high pressure on the antimicrobial activity and secondary structure of the bacteriocin nisin

Jean-marie Perrier-cornetAudrey JossierChloé ModugnoAntoine BernardCamille LoupiacFabrice NeiersHélène Simonin

subject

0301 basic medicineCircular dichroismfood.ingredient030106 microbiologyIndustrial and Manufacturing Engineering03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyfoodBacteriocinSecondary structure[SDV.IDA]Life Sciences [q-bio]/Food engineeringpolycyclic compoundsPotencyFood scienceProtein secondary structureNisinNisinbiologyFood additive[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringfood and beverages04 agricultural and veterinary sciencesGeneral Chemistrybiochemical phenomena metabolism and nutritionAntimicrobialbiology.organism_classification040401 food scienceActivityHigh pressurechemistrybacterialipids (amino acids peptides and proteins)BacteriaFood Science

description

International audience; Effect of high pressure (HP) treatment on the antimicrobial properties and the structure of nisin was evaluated. Nisin solutions at pH 2.8 or 6.1 were treated by HP at 500 MPa – 10 min – 20 °C and their antimicrobial potency was determined. It appeared that HP clearly impacted the antimicrobial activity of nisin, with respective activity loss of 22.5% and 49.9% at pH 2.8 and 6.1. Structural analysis of nisin by circular dichroism and Fourier transform-infrared spectroscopies revealed that the decrease of nisin antimicrobial activity was likely due to the unfolding of the protein induced by HP. A loss of nisin β-turns structure, particularly significant at neutral pH, was linked to the drastic drop in antimicrobial activity, as these structures are implicated in the nisin interaction with the bacterial membrane.Industrial relevanceThe combination of nisin and high pressure (HP) can be use at an industrial scale to inactivate bacteria. Nisin is allowed as a food additive (E234) and can be added at a final concentration ranging from 120 to 500 IU/g, depending on the product. In this work, we showed that HP can induce a significant reduction of nisin activity (-22.5% at pH 2.8 and -49.9% at pH 6.1). Therefore, this activity loss could be taken into account to manage the final nisin concentration in HP-treated food products.

10.1016/j.ifset.2018.01.006https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01723399