6533b7d2fe1ef96bd125e11f
RESEARCH PRODUCT
Spacetime structure of an evaporating black hole in quantum gravity
Martin ReuterAlfio Bonannosubject
High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsEvent horizonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstrophysicsPenrose processBlack holeGeneral Relativity and Quantum CosmologyMicro black holeHigh Energy Physics - Theory (hep-th)Apparent horizonQuantum mechanicsQuantum electrodynamicsVirtual black holeBlack hole thermodynamicsHawking radiationdescription
The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant.
year | journal | country | edition | language |
---|---|---|---|---|
2006-02-16 | Physical Review D |