6533b7d2fe1ef96bd125e161

RESEARCH PRODUCT

Dynamical Casimir-Polder force between an atom and a conducting wall

Roberto PassanteRuggero Vasile

subject

Electromagnetic fieldPhysicsQuantum PhysicsForce field (physics)quantum fluctuationsVacuum stateTime evolutionFOS: Physical sciencesInteraction energyquantum electrodynamicCasimir-Polder forceAtomic and Molecular Physics and OpticsCasimir effectClassical mechanicsAtomPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsGround stateQuantum Physics (quant-ph)

description

The time-dependent Casimir-Polder force arising during the time evolution of an initially bare two-level atom, interacting with the radiation field and placed near a perfectly conducting wall, is considered. Initially the electromagnetic field is supposed to be in the vacuum state and the atom in its ground state. The analytical expression of the force as a function of time and atom-wall distance, is evaluated from the the time-dependent atom-field interaction energy. Physical features and limits of validity of the results are discussed in detail.

https://dx.doi.org/10.48550/arxiv.0807.4407