6533b7d2fe1ef96bd125e1a3

RESEARCH PRODUCT

Adiabatic regularization for spin-1/2 fields

Aitor LandeteFrancisco TorrentiJosé Navarro-salas

subject

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum field theory in curved spacetimeParticle creationField (physics)De Sitter spaceScalar (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyRenormalizationTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Regularization (physics)Stress–energy tensorFísica nuclearEnergy-momentum tensorAdiabatic processAstrophysics - Cosmology and Nongalactic Astrophysics

description

We extend the adiabatic regularization method to spin-1/2 fields. The ansatz for the adiabatic expansion for fermionic modes differs significantly from the WKB-type template that works for scalar modes. We give explicit expressions for the first adiabatic orders and analyze particle creation in de Sitter spacetime. As for scalar fields, the adiabatic method can be distinguished by its capability to overcome the UV divergences of the particle number operator. We also test the consistency of the extended method by working out the conformal and axial anomalies for a Dirac field in a Friedmann-Lemaitre-Robertson-Walker spacetime, in exact agreement with those obtained from other renormalization prescriptions. We finally show its power by computing the renormalized stress-energy tensor for Dirac fermions in de Sitter space.

10.1103/physrevd.88.061501http://arxiv.org/abs/1305.7374