Adiabatic regularization for spin-1/2 fields
We extend the adiabatic regularization method to spin-1/2 fields. The ansatz for the adiabatic expansion for fermionic modes differs significantly from the WKB-type template that works for scalar modes. We give explicit expressions for the first adiabatic orders and analyze particle creation in de Sitter spacetime. As for scalar fields, the adiabatic method can be distinguished by its capability to overcome the UV divergences of the particle number operator. We also test the consistency of the extended method by working out the conformal and axial anomalies for a Dirac field in a Friedmann-Lemaitre-Robertson-Walker spacetime, in exact agreement with those obtained from other renormalization…
Adiabatic regularization and particle creation for spin one-half fields
The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Electric-magnetic duality and renormalization in curved spacetimes
We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory if an arbitrary classical gravitational background is present. The symmetry breaks in the process of renormalization, as also happens with conformal invariance. We show that a similar duality-anomaly appears for a massless scalar field in $1+1$ dimensions.