6533b7d2fe1ef96bd125eade

RESEARCH PRODUCT

A thermodynamic approach to nonlocal plasticity and related variational principles

Paolo FuschiGuido BorinoCastrenze Polizzotto

subject

Mechanical EngineeringMathematical analysisThermodynamic consistent frameworkStiffnessNonlocal Maximum dissipation theoremNonlocal PlasticityDissipationPlasticityCondensed Matter PhysicsClassical mechanicsDiffusion processMechanics of MaterialsVariational principlemedicineTangent stiffness matrixUniquenessBoundary value problemmedicine.symptomSettore ICAR/08 - Scienza Delle CostruzioniNonlocal associative plasticityMathematics

description

Elastic-plastic rate-independent materials with isotropic hardening/softening of nonlocal nature are considered in the context of small displacements and strains. A suitable thermodynamic framework is envisaged as a basis of a nonlocal associative plasticity theory in which the plastic yielding laws comply with a (nonlocal) maximum intrinsic dissipation theorem. Additionally, the rate response problem for a (continuous) set of (macroscopic) material particles, subjected to a given total strain rate field, is discussed and shown to be characterized by a minimum principle in terms of plastic coefficient. This coefficient and the relevant continuum tangent stiffness matrix are shown to admit, in the region of active plastic yielding, some specific series representations. Finally, the structural rate response problem for assigned load rates is studied in relation to the solution uniqueness, and two variational principles are provided for this boundary value problem.

http://www.scopus.com/inward/record.url?eid=2-s2.0-0033293546&partnerID=MN8TOARS