6533b7d2fe1ef96bd125ecba
RESEARCH PRODUCT
Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar
Sampo KuljuKimmo RasaKai ArstilaMarkus HannulaHailong WangHailong WangJari Hyväluomasubject
porosityMaterials scienceFOS: Physical sciencesApplied Physics (physics.app-ph)010501 environmental sciencesRaw materialkuivatislaus01 natural sciencesAnalytical ChemistryhuokoisuusAdsorptionimage analysisBiocharmedicinebiocharta216CharcoalPorosityta2180105 earth and related environmental sciencesCondensed Matter - Materials Sciencex-ray tomographybiohiilita114Materials Science (cond-mat.mtrl-sci)Physics - Applied Physics04 agricultural and veterinary sciencesAtmospheric temperature rangeslow pyrolysisWater retentionFuel TechnologykuvantaminenChemical engineeringvisual_artkuva-analyysi040103 agronomy & agriculturevisual_art.visual_art_medium0401 agriculture forestry and fisheriesmedicine.symptomPyrolysisdescription
Biochar pore space consists of porosity of multiple length scales. In direct water holding applications like water storage for plant water uptake, the main interest is in micrometre-range porosity since these pores are able to store water that is easily available for plants. Gas adsorption measurements which are commonly used to characterize the physical pore structure of biochars are not able to quantify this pore-size range. While pyrogenetic porosity (i.e. pores formed during pyrolysis process) tends to increase with elevated process temperature, it is uncertain whether this change affects the pore space capable to store plant available water. In this study, we characterized biochar porosity with x-ray tomography which provides quantitative information on the micrometer-range porosity. We imaged willow dried at 60 $^\circ$C and biochar samples pyrolysed in three different temperatures (peak temperatures 308, 384, 489 $^\circ$C, heating rate 2 $^\circ$C min$^{-1}$). Samples were carefully prepared and traced through the experiments, which allowed investigation of porosity development in micrometre size range. Pore space was quantified with image analysis of x-ray tomography images and, in addition, nanoscale porosity was examined with helium ion microscopy. The image analysis results show that initial pore structure of the raw material determines the properties of micrometre-range porosity in the studied temperature range. Thus, considering the pore-size regime relevant to the storage of plant available water, pyrolysis temperature in the studied range does not provide means to optimize the biochar structure. However, these findings do not rule out that process temperature may affect the water retention properties of biochars by modifying the chemical properties of the pore surfaces.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |