6533b7d2fe1ef96bd125ecd2

RESEARCH PRODUCT

Enhancing Optomechanical Coupling via the Josephson Effect

Mika SillanpääTero T. HeikkiläTero T. HeikkiläRaphaël KhanJani TuorilaFrancesco MasselFrancesco Massel

subject

electromagnetic fieldsJosephson effectmicromechanical resonatorsPhononta221FOS: Physical sciencesGeneral Physics and AstronomyType (model theory)01 natural sciencesvibrationsSuperconductivity (cond-mat.supr-con)010309 opticsResonatorMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsta218OptomechanicsPhysicsQuantum Physicsta214ta114Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsPhysicsCondensed Matter - SuperconductivityJosephson effectCharge (physics)Coupling (probability)cavity optomechanical systemsQuantum Physics (quant-ph)Coupling coefficient of resonators

description

Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor (SCPT) can be exploited to arrange a strong radiation pressure -type coupling $g_0$ between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high $g_0$. Contrary to the recent proposals for exploiting the non-linearity of a large radiation pressure coupling, the main non-linearity in this setup originates from a cross-Kerr type of coupling between the resonators, where the cavity refractive index depends on the phonon number. The presence of this coupling will allow accessing the individual phonon numbers via the measurement of the cavity.

https://doi.org/10.1103/physrevlett.112.203603