6533b7d2fe1ef96bd125f58b
RESEARCH PRODUCT
Timing and patterns of the ENSO signal in Africa over the last 30 years: insights from normalized difference vegetation index data.
M.t. HoffmanValéry GondNathalie PhilipponNadège MartinyPierre Camberlinsubject
RainfallSaisonAtmospheric ScienceEquatorhttp://aims.fao.org/aos/agrovoc/c_50098F62 - Physiologie végétale - Croissance et développementhttp://aims.fao.org/aos/agrovoc/c_6734http://aims.fao.org/aos/agrovoc/c_8516http://aims.fao.org/aos/agrovoc/c_7222http://aims.fao.org/aos/agrovoc/c_8038http://aims.fao.org/aos/agrovoc/c_6498http://aims.fao.org/aos/agrovoc/c_24199U10 - Informatique mathématiques et statistiquesIndice de surface foliairehttp://aims.fao.org/aos/agrovoc/c_165VegetationRemote sensing[ SDE.MCG ] Environmental Sciences/Global Changeshttp://aims.fao.org/aos/agrovoc/c_7657El Niño Southern OscillationGeography[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyClimatologyhttp://aims.fao.org/aos/agrovoc/c_6161P01 - Conservation de la nature et ressources foncières[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/Climatologyhttp://aims.fao.org/aos/agrovoc/c_7252http://aims.fao.org/aos/agrovoc/c_7497ENSOModèle mathématiquehttp://aims.fao.org/aos/agrovoc/c_8500http://aims.fao.org/aos/agrovoc/c_1671P40 - Météorologie et climatologieTélédétectionhttp://aims.fao.org/aos/agrovoc/c_29553[SDE.MCG]Environmental Sciences/Global ChangesNormalized Difference Vegetation Indexhttp://aims.fao.org/aos/agrovoc/c_35196Interannual variabilityhttp://aims.fao.org/aos/agrovoc/c_6911Donnée climatiquePrecipitationCombined resulthttp://aims.fao.org/aos/agrovoc/c_8176http://aims.fao.org/aos/agrovoc/c_2676PrécipitationWinter rainfallIntertropical Convergence ZoneVégétation15. Life on landTempérature13. Climate actionVegetation-atmosphere interactionsAfricaClimatologiehttp://aims.fao.org/aos/agrovoc/c_4964Énergie solairedescription
Abstract A more complete picture of the timing and patterns of the ENSO signal during the seasonal cycle for the whole of Africa over the three last decades is provided using the normalized difference vegetation index (NDVI). Indeed, NDVI has a higher spatial resolution and is more frequently updated than in situ climate databases, and highlights the impact of ENSO on vegetation dynamics as a combined result of ENSO on rainfall, solar radiation, and temperature. The month-by-month NDVI–Niño-3.4 correlation patterns evolve as follows. From July to September, negative correlations are observed over the Sahel, the Gulf of Guinea coast, and regions from the northern Democratic Republic of Congo to Ethiopia. However, they are not uniform in space and are moderate (~0.3). Conversely, positive correlations are recorded over the winter rainfall region of South Africa. In October–November, negative correlations over Ethiopia, Sudan, and Uganda strengthen while positive correlations emerge in the Horn of Africa and in the southeast coast of South Africa. By December with the settlement of the ITCZ south of the equator, positive correlations over the Horn of Africa spread southward and westward while negative correlations appear over Mozambique, Zimbabwe, and South Africa. This pattern strengthens and a dipole at 18°S is well established in February–March with reduced (enhanced) greenness during ENSO years south (north) of 18°S. At the same time, at ~2°N negative correlations spread northward. Last, from April to June negative correlations south of 18°S spread to the north (to 10°S) and to the east (to the south of Tanzania).
year | journal | country | edition | language |
---|---|---|---|---|
2014-04-01 |