6533b7d2fe1ef96bd125f58f

RESEARCH PRODUCT

The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces

Panu Lahti

subject

Pure mathematicsProperty (philosophy)1-fine topologyGeneral MathematicsPoincaré inequalityMathematics::General Topology01 natural sciencesMeasure (mathematics)Complete metric spacefunktioteoriasymbols.namesakeMathematics - Metric GeometryFOS: Mathematics0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsta111Metric Geometry (math.MG)30L99 31E05 26B30function of bounded variationfine Kellogg propertymetriset avaruudet010101 applied mathematicsMetric spacemetric measure spacequasi-Lindelöf principleChoquet propertysymbolspotentiaaliteoriaFine topology

description

In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed

http://arxiv.org/abs/1712.08027