6533b7d2fe1ef96bd125f6bf
RESEARCH PRODUCT
Trans -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging
Patricia E. EdemMatthias BarzBarbara SohrKamilla NorregaardAndreas KjaerAlexander BirkeRaffaella RossinJesper L. KristensenDennis SvatunekChristine SeidlVladimir ShalgunovKerstin JohannMarc S. RobillardE. Johanna L. StéenMatthias M. HerthJesper Tranekjær JørgensenFriederike SchmidHannes Mikulasubject
pretargeted imagingGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundTetrazinetetrazine ligationCycloocteneGeneral Materials Sciencepolypeptide-graft-polypeptoidsPretargetingchemistry.chemical_classificationGeneral EngineeringPolymerEPR effectPeptoBrush021001 nanoscience & nanotechnologynanomedicineSmall moleculeCombinatorial chemistryImaging agent0104 chemical scienceschemistrySPECTNanomedicineBioorthogonal chemistry0210 nano-technologydescription
Tumor targeting using agents with slow pharmacokinetics represents a major challenge in nuclear imaging and targeted radionuclide therapy as they most often result in low imaging contrast and high radiation dose to healthy tissue. To address this challenge, we developed a polymer-based targeting agent that can be used for pretargeted imaging and thus separates tumor accumulation from the imaging step in time. The developed targeting agent is based on polypeptide-graft-polypeptoid polymers (PeptoBrushes) functionalized with trans-cyclooctene (TCO). The complementary In-111-labeled imaging agent is a 1,2,4,5-tetrazine derivative, which can react with aforementioned TCO-modified PeptoBrushes in a rapid bioorthogonal ligation. A high degree of TCO loading (up to 30%) was achieved, without altering the physicochemical properties of the polymeric nanoparticle. The highest degree of TCO loading resulted in significantly increased reaction rates (77-fold enhancement) compared to those with small molecule TCO moieties when using lipophilic tetrazines. Based on computer simulations, we hypothesize that this increase is a result of hydrophobic effects and significant rearrangements within the polymer framework, in which hydrophobic patches of TCO moieties are formed. These patches attract lipophilic tetrazines, leading to increased reaction rates in the bioorthogonal ligation. The most reactive system was evaluated as a targeting agent for pretargeted imaging in tumor-bearing mice. After the setup was optimized, sufficient tumor-to-background ratios were achieved as early as 2 h after administration of the tetrazine imaging agent, which further improved at 22 h, enabling clear visualization of CT-26 tumors. These findings show the potential of PeptoBrushes to be used as a pretargeting agent when an optimized dose of polymer is used.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 | ACS Nano |