0000000000189938

AUTHOR

Andreas Kjaer

showing 4 related works from this author

Trans -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging

2020

Tumor targeting using agents with slow pharmacokinetics represents a major challenge in nuclear imaging and targeted radionuclide therapy as they most often result in low imaging contrast and high radiation dose to healthy tissue. To address this challenge, we developed a polymer-based targeting agent that can be used for pretargeted imaging and thus separates tumor accumulation from the imaging step in time. The developed targeting agent is based on polypeptide-graft-polypeptoid polymers (PeptoBrushes) functionalized with trans-cyclooctene (TCO). The complementary In-111-labeled imaging agent is a 1,2,4,5-tetrazine derivative, which can react with aforementioned TCO-modified PeptoBrushes i…

pretargeted imagingGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundTetrazinetetrazine ligationCycloocteneGeneral Materials Sciencepolypeptide-graft-polypeptoidsPretargetingchemistry.chemical_classificationGeneral EngineeringPolymerEPR effectPeptoBrush021001 nanoscience & nanotechnologynanomedicineSmall moleculeCombinatorial chemistryImaging agent0104 chemical scienceschemistrySPECTNanomedicineBioorthogonal chemistry0210 nano-technologyACS Nano
researchProduct

Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [11C]AE-1 for pretargeted PET imaging

2019

Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functionalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11 C-labeled tetrazine ([ 11 C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bisphosphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting agents in pair with [ 11 C]AE-1. Howeve…

Nuclear imagingClinical BiochemistryTetrazinePET imagingPharmaceutical ScienceCarbon-1101 natural sciencesBiochemistryTetrazinechemistry.chemical_compoundIn vivoTrans-cycloocteneDrug DiscoveryMolecular BiologyPretargetingPretargeting010405 organic chemistryChemistryOrganic ChemistryRadiosynthesisPet imaging3. Good health0104 chemical sciences010404 medicinal & biomolecular chemistryMolecular MedicineBiomedical engineeringBioorganic & Medicinal Chemistry Letters
researchProduct

Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging

2019

Background Pretargeted imaging allows the use of short-lived radionuclides when imaging the accumulation of slow clearing targeting agents such as antibodies. The biotin-(strept)avidin and the bispecific antibody-hapten interactions have been applied in clinical pretargeting studies; unfortunately, these systems led to immunogenic responses in patients. The inverse electron demand Diels-Alder (IEDDA) reaction between a radiolabelled tetrazine (Tz) and a trans-cyclooctene (TCO)-functionalized targeting vector is a promising alternative for clinical pretargeted imaging due to its fast reaction kinetics. This strategy was first applied in nuclear medicine using an 111In-labelled Tz to image TC…

lcsh:Medical physics. Medical radiology. Nuclear medicineBiodistributionlcsh:R895-920Tetrazine010402 general chemistry01 natural sciencesChemical kineticsTetrazinechemistry.chemical_compoundMedicineDOTARadiology Nuclear Medicine and imagingPretargeted imagingInverse electron-demand Diels–Alder reactionAlendronic acidOriginal ResearchPretargetingTrans-cyclooctene (TCO)biologymedicine.diagnostic_test010405 organic chemistrybusiness.industryScandium-44 (44Sc)RadiochemistryBisphosphonates0104 chemical sciences3. Good healthchemistryPositron emission tomographyPositron emission tomography (PET)biology.proteinInverse electron demand Diels-Alder (IEDDA)businessAvidinEJNMMI Research
researchProduct

Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis

2018

Summary Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional respons…

0301 basic medicineBiologiaBioenergeticsChop-10 ; Crls1 ; Beige Adipose ; Brown Adipose ; Cardiolipin ; Insulin Resistance ; Lipid Metabolism ; Mitochondria ; Phospholipids ; ThermogenesisPhysiologyGlucose uptakeAdipose tissueTransferases (Other Substituted Phosphate Groups)MitochondrionEnergy homeostasischemistry.chemical_compoundMice0302 clinical medicineAdipose Tissue Browninsulin resistancelipid metabolismCardiolipinAdipocytesCells CulturedThermogenesisthermogenesisCell biologyMitochondriamitochondriaCHOP-10lipids (amino acids peptides and proteins)BioquímicaCardiolipinsbeige adiposeArticle03 medical and health sciencesInsulin resistanceCRLS1medicineAnimalsHumansMolecular Biologyphospholipidsbrown adiposeMembrane ProteinsCell BiologyAdipose Tissue Beigemedicine.diseaseMice Inbred C57BL030104 developmental biologychemistrycardiolipinEnergy MetabolismThermogenesis030217 neurology & neurosurgery
researchProduct