fitforthem
about

scope and guide to the platform

—research groups

research groups network graph visualization

—repositories

catalog of the institutional repositories

—heritage

selection of collections, museum, cultural sites and ancient books

By continuing your visit to this site, you accept the use of essential cookies.

Read more
6533b7d2fe1ef96bd125f84c

RESEARCH PRODUCT

On the representation of integers by indefinite binary Hermitian forms

Jouni ParkkonenFrédéric Paulin

subject

Pure mathematicsrepresentation of integersGeneral MathematicsHyperbolic geometryAMS : 11E39 11N45 20H10 30F4001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]symbols.namesake0103 physical sciencesEisenstein seriesCongruence (manifolds)group of automorphs0101 mathematicsQuaternionMathematicsBinary Hermitian formQuaternion algebraMathematics - Number TheorySesquilinear formta111010102 general mathematicsOrder (ring theory)Hermitian matrix[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Bianchi group[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential Geometry010307 mathematical physics

description

Given an integral indefinite binary Hermitian form f over an imaginary quadratic number field, we give a precise asymptotic equivalent to the number of nonequivalent representations, satisfying some congruence properties, of the rational integers with absolute value at most s by f, as s tends to infinity.

yearjournalcountryeditionlanguage
2011-01-01
https://hal.archives-ouvertes.fr/hal-00628342
EU flag

FORTHEM European University Alliance is co-funded by the European Union. FIT FORTHEM has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 101017248. The content of this website represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission.

University of Jyväskylä logoUniversity of Jyväskylä's websiteUniversity of Burgundy logoUniversity of Burgundy's websiteUniversity of Mainz logoUniversity of Mainz's websiteUniversity of Palermo logoUniversity of Palermo's websiteUniversity of Latvia logoUniversity of Latvia's website
University of Agder logoUniversity of Agder's websiteUniversity of Opole logoUniversity of Opole's websiteUniversity of Sibiu logoUniversity of Sibiu's websiteUniversity of València logoUniversity of València's website
FORTHEM logoFORTHEM alliance's website