6533b7d3fe1ef96bd12601b4

RESEARCH PRODUCT

Combining inulin multifunctional polycation and magnetic nanoparticles: Redox-responsive siRNA-loaded systems for magnetofection

Gennara CavallaroGaetano GiammonaEmanuela Fabiola CraparoCarla SardoBarbara Porsio

subject

Polymers and PlasticsCystamine; DETA; Inulin; SiRNA; SPIONsCellDETACystamineNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryCystamineSiRNAmedicineChemistryInulinGeneral ChemistryGlutathione021001 nanoscience & nanotechnologyequipment and suppliesIn vitro0104 chemical sciencesmedicine.anatomical_structureSPIONsSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoMagnetofectionNucleic acidBiophysicsMagnetic nanoparticles0210 nano-technologyhuman activities

description

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are recognized as one of the most promising agents for theranostic applications. Among methods designed for siRNA delivery, magnetofection, that is, nucleic acid cell uptake under the influence of a magnetic field acting on magnetic nucleic acid vectors, is emerging as a unique approach to combining advantages such as strong improvement of the kinetics of the delivery process and the possibility of localizing nucleic acid delivery to an area where the magnetic field is applied. This paper reports on the preparation of siRNA loaded magnetoplexes&mdash

10.3390/polym11050889http://hdl.handle.net/11386/4728445