Search results for "SPIONs"
showing 10 items of 12 documents
Folate targeted coated SPIONs as efficient tool for MRI
2017
The development of more sensitive diagnostic tools allowing an early-stage and highly efficient medical imaging of tumors remains a challenge. Magnetic nanoparticles seem to be the contrast agents with the highest potential, if properly constructed. Therefore, in this study, hybrid magnetic nanoarchitectures were developed using a new amphiphilic inulin-based graft copolymer (INU-LAPEG-FA) as coating material for 10-nm spinel iron oxide (magnetite, Fe3O4) superparamagnetic nanoparticles (SPION). Folic acid (FA) covalently linked to the coating copolymer in order to be exposed onto the nanoparticle surface was chosen as the targeting agent because folate receptors are upregulated in many can…
Combining inulin multifunctional polycation and magnetic nanoparticles: Redox-responsive siRNA-loaded systems for magnetofection
2019
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are recognized as one of the most promising agents for theranostic applications. Among methods designed for siRNA delivery, magnetofection, that is, nucleic acid cell uptake under the influence of a magnetic field acting on magnetic nucleic acid vectors, is emerging as a unique approach to combining advantages such as strong improvement of the kinetics of the delivery process and the possibility of localizing nucleic acid delivery to an area where the magnetic field is applied. This paper reports on the preparation of siRNA loaded magnetoplexes&mdash
Inulin-Ethylenediamine Coated SPIONs Magnetoplexes: A Promising Tool for Improving siRNA Delivery.
2015
An inulin based polycation (Inu-EDA) has been synthesized by the grafting of ethylenediamine molecules onto inulin backbone. The obtained inulin copolymer has been though to coat SPIONs (IC-SPIONs) and obtain stable magnetoplexes by complexation of IC-SPIONs with a model duplexed siRNA, for improving oligonucleotide transfection efficiency.The physical-chemical characteristics of IC-SPIONs and IC-SPIONs/siRNA magnetoplexes have been investigated by scanning and transmission electron microscopies, dynamic light scattering, FT-IR and qualitative surface elementary analysis. Cell compatibility and internalization in vitro of IC-SPIONs have been evaluated by MTS and fluorescence microscopy resp…
Ferritin-Coated SPIONs as New Cancer Cell Targeted Magnetic Nanocarrier
2023
Superparamagnetic iron oxide nanoparticles (SPIONs) may act as an excellent theragnostic tool if properly coated and stabilized in a biological environment, even more, if they have targeting properties towards a specific cellular target. Humanized Archaeoglobus fulgidus Ferritin (HumAfFt) is an engineered ferritin characterized by the peculiar salt-triggered assembly-disassembly of the hyperthermophile Archaeoglobus fulgidus ferritin and is successfully endowed with the human H homopolymer recognition sequence by the transferrin receptor (TfR1 or CD71), overexpressed in many cancer cells in response to the increased demand of iron. For this reason, HumAfFt was successfully used in this stud…
Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy
2014
This paper deal with the synthesis and characterization of PEGylated squalene-grafted-inulin amphiphile capable of self-assembling and self-organizing into nanocarriers once placed in aqueous media. It was exploited as coating agent for obtaining doxorubicin loaded superparamagnetic iron oxide nanoparticles (SPIONs) endowed with stealth like behavior and excellent physicochemical stability. Inulin was firstly modified in the side chain with primary amine groups, followed in turn by conjugation with squalenoyl derivatives through common amidic coupling agents and PEGylation by imine linkage. Polymer coated SPIONs were so obtained by spontaneous self-assembling of inulin copolymer onto magnet…
SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells.
2018
Abstract The extremely complex tumor microenvironment (TME) in humans is the major responsible for the therapeutic failure in cancer nanomedicine. A new concept of disease-driven nanomedicine, henceforth named “Theranomics”, which attempts to target cancer cells and TME on the whole, represents an attractive alternative. Herein, a nanomedicine able to co-deliver doxorubicin and a tumor suppressive proteolytic protein such as collagenase-2 was developed. We successfully obtained superparamagnetic nanogels (SPIONs/Doco@Col) via the intermolecular azide-alkyne Huisgen cycloaddition. We demonstrated that a local ECM degradation and remodeling in solid tumors by means of collagenase-2 could enha…
Nanosystem for diagnosis and photothermal treatment of tumors
2022
The invention relates to a nanosystem for the diagnosis, image-guided treatment of tumors and monitoring of the tumor microenvironment. The nanosystem is a contrast agent comprising a polymer shell based on a hyaluronic acid nanogel, super-parameg-netic iron oxide nanoparticles (SPIONs) and carbon nanoparticles (CDs).
Nanosistemi polimerici per la veicolazione di farmaci antitumorali o attivi sul sistema nervoso centrale
2014
Functionnalized magnetite nanoparticles for bimodal imaging MRI/PET
2015
Functionalized magnetite nanoparticles for bimodal MRI/PET imagingSuperParamagnetic Iron Oxide Nanoparticles (SPIONs) have been widely studied in the biomedical field due to their promising application as nanodrugs and MRI (Magnetic Resonance Imaging) contrast agents (T2). In this study, magnetite (Fe3O4) nanoparticles have been developed for use as contrast agents for MRI/PET (Positron emission tomography) double imaging. First, functionalized stable superparamagnetic SPIONs have been synthesized in a continuous hydrothermal reactor. During the synthesis, hydrophilic agents (citric acid, LDOPA, DHCA and PHA) have been grafted on the surface of the nanoparticles. The functionalization of th…