6533b828fe1ef96bd1287af5
RESEARCH PRODUCT
SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells.
Paola VarvaràGennara CavallaroRoberto PuleioNicolò MauroGaetano GiammonaMariano LicciardiCinzia Scialabbasubject
Polyamino acidPolyamino acidsCollagenasePharmaceutical ScienceBreast Neoplasms02 engineering and technology030226 pharmacology & pharmacy03 medical and health sciences0302 clinical medicineBreast cancerBreast cancerDrug Delivery SystemsCell Line TumormedicineTumor MicroenvironmentHumansDoxorubicinTargeted cancer therapyAmino AcidsMagnetite NanoparticlesTumor microenvironmentAntibiotics AntineoplasticChemistrySPIONCancerTheranomicDrug Synergism021001 nanoscience & nanotechnologymedicine.diseasenanomedicineNanomedicinesDrug LiberationSPIONsMatrix Metalloproteinase 8DoxorubicinCancer cellCancer researchNanomedicineTheranomicsFemaleBreast cancer cellspolyamino acid0210 nano-technologyGelsmedicine.drugdescription
Abstract The extremely complex tumor microenvironment (TME) in humans is the major responsible for the therapeutic failure in cancer nanomedicine. A new concept of disease-driven nanomedicine, henceforth named “Theranomics”, which attempts to target cancer cells and TME on the whole, represents an attractive alternative. Herein, a nanomedicine able to co-deliver doxorubicin and a tumor suppressive proteolytic protein such as collagenase-2 was developed. We successfully obtained superparamagnetic nanogels (SPIONs/Doco@Col) via the intermolecular azide-alkyne Huisgen cycloaddition. We demonstrated that a local ECM degradation and remodeling in solid tumors by means of collagenase-2 could enhance tumor penetration of nanomedicines and the in situ sustained release of the drug payload throughout 3-D tumor spheroids up to the core (parenchyma), thus enabling a synergistic and efficient anticancer effect toward highly invasive breast tumors. We illustrate that SPIONs/Doxo@Col is also capable of reducing the invasivity of cancer cells.
year | journal | country | edition | language |
---|---|---|---|---|
2018-09-26 | International journal of pharmaceutics |