6533b7d3fe1ef96bd1260233
RESEARCH PRODUCT
Hom-Lie quadratic and Pinczon Algebras
Wissem BakbrahemDidier ArnalRidha Chatbourisubject
[ MATH ] Mathematics [math]Universal enveloping algebra01 natural sciencesCohomologyFiltered algebraQuadratic algebraMathematics::Category Theory0103 physical sciences[MATH]Mathematics [math]0101 mathematicsMSC: 17A45 17B56 17D99 55N20ComputingMilieux_MISCELLANEOUSMathematicsSymmetric algebraAlgebra and Number TheoryQuadratic algebrasMathematics::Rings and Algebras010102 general mathematicsUp to homotopy algebras16. Peace & justiceLie conformal algebraHom-Lie algebrasAlgebraDivision algebraAlgebra representationPhysics::Accelerator PhysicsCellular algebra010307 mathematical physicsdescription
ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.
year | journal | country | edition | language |
---|---|---|---|---|
2017-05-11 |