6533b7d3fe1ef96bd126025b
RESEARCH PRODUCT
Hidden Strange Nonchaotic Attractors
Marius-f. DancaNikolay Kuznetsovsubject
Mathematics::Dynamical SystemsGeneral MathematicsChaoticattraktoritLyapunov exponenthidden chaotic attractor01 natural sciencesStrange nonchaotic attractor010305 fluids & plasmassymbols.namesakeFractalRabinovich–Fabrikant system0103 physical sciencesAttractorComputer Science (miscellaneous)Statistical physicsdynaamiset systeemitRecurrence plot010301 acousticsEngineering (miscellaneous)BifurcationPhysicskaaosteorialcsh:Mathematicslcsh:QA1-939strange nonchaotic attractorself-excited attractorNonlinear Sciences::Chaotic DynamicsQuasiperiodic functionsymbolsfraktaalitdescription
In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic attractor of the Rabinovich–Fabrikant system are comparatively analyzed.
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-01 | Mathematics |