6533b7d3fe1ef96bd12607d7
RESEARCH PRODUCT
Direct observation of temperature dependent magnetic domain structure of the multiferroic La0.66Sr0.34MnO3/BiFeO3 bilayer system by x-ray linear dichroism- and x-ray magnetic circular dichroism-photoemission electron microscopy
Frithjof NoltingMathias KläuiMichele BuzziChristian MixFlorian KronastSimone FinizioG. Jakobsubject
Photoemission electron microscopyExchange biasMaterials scienceFerromagnetismCondensed matter physicsX-ray magnetic circular dichroismMagnetic domainMagnetic circular dichroismGeneral Physics and AstronomyMultiferroicsDichroismdescription
Low-thickness La0.66Sr0.34MnO3 (LSMO)/BiFeO3 (BFO) thin film samples deposited on SrTiO3 were imaged by high resolution x-ray microscopy at different temperatures. The ultra-thin thickness of the top layer allows to image both the ferromagnetic domain structure of LSMO and the multiferroic domain structure of the buried BFO layer, opening a path to a direct observation of coupling at the interface on a microscopic level. By comparing the domain size and structure of the BFO and LSMO, we observed that, in contrast to LSMO single layers, LSMO/BFO multilayers show a strong temperature dependence of the ferromagnetic domain structure of the LSMO. Particularly, at 40 K, a similar domain size for BFO and LSMO is observed. This indicates a persistence of exchange coupling on the microscopic scale at a temperature, where the exchange bias as determined by magnetometer measurements is vanishing.
year | journal | country | edition | language |
---|---|---|---|---|
2014-05-21 | Journal of Applied Physics |