6533b7d3fe1ef96bd12609c2

RESEARCH PRODUCT

A FE-Meshless Multiscale Approach for Masonry Materials

Giuseppe GiambancoEmma La Malfa RibollaAntonino Spada

subject

Mesoscopic physicsComputational Homogenization; Interfaces; Localization; Masonry; Meshless; Engineering (all)Aggregate (composite)Materials sciencebusiness.industryMeshlessInterfaces.Mathematical analysisGeneral MedicineStructural engineeringMasonryInterfaceComputational HomogenizationFinite element methodMeshleQuadrature (mathematics)Engineering (all)LocalizationTangent stiffness matrixBoundary value problembusinessSettore ICAR/08 - Scienza Delle CostruzioniMasonrySofteningEngineering(all)

description

Abstract A FE-Meshless multiscale computational strategy for the analysis of running bond masonry is presented. The Meshless Method (MM) is adopted to solve the boundary value problem (BVP) at the mesoscopic level. The representative unit cell is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter are simulated as non-associated elastic-plastic zero-thickness interfaces with a softening response. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements.

10.1016/j.proeng.2015.06.244http://dx.doi.org/10.1016/j.proeng.2015.06.244