6533b7d3fe1ef96bd1260b23
RESEARCH PRODUCT
Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85
G. LisiniBeate StelzerFrank HaberlAndrea BelfioreRoberta PaladiniDaniele D'agostinoS. SciortinoS. SciortinoA. De LucaA. De LucaG. NovaraJörn WilmsIgnazio PillitteriIgnazio PillitteriM. MarelliDavid SalvettiD. PizzocaroD. PizzocaroGiacomo VianelloAndrea TiengoAndrea TiengoAndrea TiengoRuben SalvaterraM. G. Watsonsubject
010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesflares; X-rayslaw.inventionPhotometry (optics)law0103 physical sciencesProtostarAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencescoronaePhysicseducation.field_of_studystars: protostarsStar formationactivityAstronomy and AstrophysicsLight curveAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary AstrophysicsFlaredescription
X-ray emission from Young Stellar Objects (YSOs) is crucial to understand star formation. A very limited amount of X-ray results is available for the protostellar (ClassI) phase. A systematic search of transient X-ray phenomena combined with a careful evaluation of the evolutionary stage offer a widely unexplored window to our understanding of YSOs X-ray properties. Within the EXTraS project, a search for transients and variability in the whole XMM-Newton archive, we discover transient X-ray emission consistent with ISO-Oph 85, a strongly embedded YSO in the rho Ophiuchi region, not detected in previous time-averaged X-ray studies. We extract an X-ray light curve for the flare and determine its spectral parameters from XMM-Newton/EPIC (European Photon Imaging Camera) data using quantile analysis. The X-ray flare ($2500\,s$), the only one detected in the XMM-Newton archive for ISO-Oph 85, has a luminosity of $LogL_X[erg/s]=31.1$ and a spectrum consistent with a highly-absorbed one-component thermal model ($N_H=1.0^{+1.2}_{-0.5}10^{23}\,cm^{-2}$, $kT=1.15^{+2.35}_{-0.65}\,keV)$. We set an upper limit of $LogL_X[erg/s]<29.5$ to the quiescent X-ray luminosity. We build a SED with IR to mm photometry drawn from literature and mid-IR Spitzer and sub-mm Herschel photometry analysed by us, and compare it with pre-computed models. The sub-mm emission peak in the Herschel data suggests that the object is a ClassI protostar. However, the Herschel/IR position offset is larger than for other YSOs in the region, leaving some doubt on the association. This is the first X-ray flare from a YSO recognised as a candidate ClassI YSO via the analysis of its complete SED. This work shows how the analysis of the whole SED is fundamental for the classification of YSOs, and how the X-ray source detection techniques we developed can open a new era in time-resolved analysis of the X-ray emission from stars.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |