6533b7d3fe1ef96bd1260bab
RESEARCH PRODUCT
Differential distribution and enrichment of non-coding RNAs in exosomes from normal and Cancer-associated fibroblasts in colorectal cancer.
Antonio CandiaJulie EarlTrinidad CaldésFélix BonillaMaría Jesús LarribaMarta RodríguezVanesa García-barberánBeatriz GilAlberto HerreraMercedes HerreraPilar GarreRicardo Alan Verdú RamosCarlos LlorensAlfredo CarratoCristina PeñaMercedes Rodríguez-garrotesubject
0301 basic medicineCancer ResearchStromal cellRNA UntranslatedColorectal cancerBiologyExosomeslcsh:RC254-282Non-coding RNAs03 medical and health sciencesCancer-Associated FibroblastsCell MovementNext generation sequencingmedicineBiomarkers TumorHumansLiquid biopsyLetter to the EditorCells CulturedCell ProliferationTumor microenvironmentColon CancerLiquid biopsySequence Analysis RNACancerHigh-Throughput Nucleotide SequencingFibroblastsmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPrognosisMicrovesiclesGene Expression Regulation Neoplastic030104 developmental biologyOncologyTumor microenvironmentTumor progressionCancer researchMolecular MedicineCancer-Associated FibroblastsColorectal Neoplasmsdescription
Exosome production from cancer-associated fibroblasts seems to be an important driver of tumor progression. We report the first in-depth biotype characterization of ncRNAs, analyzed by Next Generation Sequencing and Bioinformatics, expressed in established primary human normal and cancer-associated fibroblasts (CAFs) from cancer and normal mucosa tissues from 9 colorectal cancer patients, and/or packaged in their derived exosomes. Differential representation and enrichment analyses based on these ncRNAs revealed a significant number of differences between the ncRNA content of exosomes and the expression patterns of the normal and cancer-associated fibroblast cells. ncRNA regulatory elements are specifically packaged in CAF-derived exosomes, supporting a specific cross-talk between CAFs and colon cancer cells and/or other stromal cells, mediated by exosomes. These sncRNAs are potential biomarkers present in cancer-associated fibroblast-derived exosomes, which should thereby contribute to developing new non-invasive diagnostic, prognostic and predictive methods for clinical applications in management of cancer patients.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |