6533b7d3fe1ef96bd1260ca2
RESEARCH PRODUCT
The Structural Diversity of Benzofuran Resorcinarene Leads to Enhanced Fluorescence
Janne A. IhalainenTiia-riikka TeroMaija NissinenKirsi SalorinneHeli Lehtivuorisubject
calixarenesStereochemistryPhenylalanineCyclohexane conformationMolecular ConformationSupramolecular chemistryChemistry Techniques SyntheticConjugated systemCrystallography X-RayBiochemistrysupramolecular chemistryStructure-Activity Relationshipchemistry.chemical_compoundCalixarenePolymer chemistrysupramolekulaarinen kemiaresorcinarenesMoietyBenzofuranX-ray diffractta116BenzofuransMolecular StructureOrganic Chemistryfluoresenssita1182benzofuranGeneral ChemistryResorcinareneFluorescenceX-ray diffractionSpectrometry Fluorescencechemistryfluorescencedescription
An unexpected and previously unknown resorcinarene mono-crown with a fused benzofuran moiety in its macrocyclic core was obtained as a byproduct from a bridging reaction of tetramethoxy resorcinarene with tetraethylene glycol ditosylate. The formation of the fused benzofuran moiety in the resorcinarene macrocycle resulted in a unique rigid and puckered boat conformation, as shown by XRD studies in the solid state. Modification of the macrocycle was also observed to affect the photophysical properties in solution by enhancing the fluorescence brightness compared with a conventional resorcinarene macrocycle. The fluorescent properties enabled unique detection of structural features, that is, the rigid boat conformation with the conjugated benzofuran system and the more flexible crown bridge part, in solution. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2014-07-01 | Chemistry - An Asian Journal |