6533b7d3fe1ef96bd126123c
RESEARCH PRODUCT
Clustering Algorithms for MRI
Ralph BernsteinRobert De La PazVito Di GesùWiliams A. Hansonsubject
medicine.diagnostic_testbusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognitionMagnetic resonance imagingImage (mathematics)ComputingMethodologies_PATTERNRECOGNITIONmedicineSegmentationArtificial intelligenceCluster analysisbusinessPerceptual informationdescription
Magnetic Resonance Imaging (MRI) plays a relevant role in the design of systems for computer assisted diagnosis. MR-images are multi-dimensional in nature; physicians have to combine several perceptual information images to perform the tissue classification needed for diagnosis. Automatic clustering methods help to discriminate relevant features and to perform a preliminary segmentation of the image; it can guide the final manual classification of body-tissues. Three clustering techniques and their integration in a MRI-system are described. Their performance and accuracy was evaluated on synthetic and real image-data. A comparison of our approach with the tissue-classification done by a radiologist was performed.
year | journal | country | edition | language |
---|---|---|---|---|
1991-01-01 |