6533b7d3fe1ef96bd12612c1

RESEARCH PRODUCT

Heat capacities, volumes and solubilities of pentanol in aqueous surfactant solutions

R. De LisiStefana MiliotoEmilia Fisicaro

subject

MolalityChemistryInorganic chemistryDistribution constantBiophysicsAnalytical chemistryBiochemistryHeat capacityMicellechemistry.chemical_compoundMolar volumePulmonary surfactantBromideMicellar solutionslipids (amino acids peptides and proteins)Physical and Theoretical ChemistryMolecular Biology

description

Apparent molar heat capacities and volumes of pentanol (PentOH) 0.05m in dodecyltrimethylammonium chloride (DTAC), dodecyldimethylammonium chloride (DDAC) and dodecylamine hydrochloride (DAC) micellar solutions were measured at 25°C. They were assumed to approach the standard infinite dilution values and rationalized by means of previously reported equations. The distribution constant between the aqueous and the micellar phase and heat capacity and volume of pentanol in both phases were thus derived. The results show that the presence of methyl groups on the surfactant head group does not appreciably influence the apparent molar volume and heat capacity of pentanol in micellar phase and the free energy of transfer of pentanol from the aqueous to the micellar phase. Also, the apparent molar heat capacities of pentanol in micellar solutions as a function of surfactant concentration show evidence of two maxima for DAC and of one maximum for DTAC whereas no maxima were detected for DDAC. According to the literature data for alkyltrimethylammonium bromides these maxima can be ascribed to the presence of structural post-micellar transitions. It is shown that the Cϕ,PentOH vs. surfactant molality curve for DAC lies between that for hexadecyltrimethylammonium bromide and that for tetradecyltrimethylammonium bromide. This evidence, which is similar to that found for solubilities, agrees with the previously reported idea that the removal of a CH3 group from the head group of surfactant is equivalent to the introduction of a CH2 group in its hydrophobic moiety. By comparing data for DTAC with those for the corresponding bromide, the role of the nature of the counterion in the thermodynamics of solubilization of pentanol in micellar solutions is derived.

https://doi.org/10.1007/bf00657329